摘要
Minor alloying plays an important role in the synthesis and improvement of thermal stability of bulk metallic glasses(BMGs).The present study was conducted to investigate the effect of minor additions of Y,Ti and Nb on the crystallization behavior and the thermal properties of Zr64.5Ni15.5Al11.5Cu8.5 alloy.Thermal parameters and the activation energies for crystallization were calculated for four(Zr0.645Ni0.155Al0.115-Cu0.085)100-xMx(M=Y,Ti and Nb,while x=0,2 at.) alloys.The present alloys have wide supercooled liquid region of ≥87 K.Maximum activation energy was found to be greater than 300 kJ/mol for the base alloy.Four crystalline phases were identified in the samples annealed at 823 K for 20 min.Reduced glass transition temperature(Trg) and other thermal parameters such as γ,δ and β were improved by Y and Ti addition.Nb addition resists crystallization below annealing temperature 713 K,however,its effect on thermal properties is not very promising.
Minor alloying plays an important role in the synthesis and improvement of thermal stability of bulk metallic glasses(BMGs).The present study was conducted to investigate the effect of minor additions of Y,Ti and Nb on the crystallization behavior and the thermal properties of Zr64.5Ni15.5Al11.5Cu8.5 alloy.Thermal parameters and the activation energies for crystallization were calculated for four(Zr0.645Ni0.155Al0.115-Cu0.085)100-xMx(M=Y,Ti and Nb,while x=0,2 at.) alloys.The present alloys have wide supercooled liquid region of ≥87 K.Maximum activation energy was found to be greater than 300 kJ/mol for the base alloy.Four crystalline phases were identified in the samples annealed at 823 K for 20 min.Reduced glass transition temperature(Trg) and other thermal parameters such as γ,δ and β were improved by Y and Ti addition.Nb addition resists crystallization below annealing temperature 713 K,however,its effect on thermal properties is not very promising.
基金
support from the National Natural Science Foundation of China and the Ministry of Science Technology of China