期刊文献+

ZnO基二维光子晶体的带隙研究 被引量:3

Study on band gaps of ZnO-based two-dimensional photonic crystals
在线阅读 下载PDF
导出
摘要 用平面波展开法研究以ZnO为背景介质,由周期性排列的空气圆孔柱、椭圆孔柱和正方孔柱分别构成的三角晶格结构的光子晶体,计算在不同参数条件下光子晶体的能带曲线。研究结果表明,通过调控孔柱和晶格常数的大小,可以改变光子晶体带隙位置和宽度;对于所有ZnO基三角晶格结构空气孔二维光子晶体,TE模比TM模带隙更宽;正方空气孔柱光子晶体的带隙比圆柱和椭圆柱光子晶体的带隙要宽。 The plane wave expansion method is used to study the photonic crystals (PhCs) conforming to triangular lattice configuration with periodic circle, ellipse and square air holes embedded in ZnO background and calculate their band gaps with different parameters. Research results show that the location and band width of PhC can be changed by modulating its lattice constant and the size of air holes. For all ZnO-based two-dimensional air hole PhCs with triangular lattice configuration, the band gap of TE mode is wider than that of TM mode. The band gap of PhC with square air holes is wider than the results of PhCs formed by circle and ellipse air holes.
出处 《山东建筑大学学报》 2011年第2期126-129,共4页 Journal of Shandong Jianzhu University
基金 山东省自然科学基金项目(ZR2010AM025) 山东建筑大学校内博士基金项目(XNBS0903)
关键词 ZnO光子晶体 平面波展开法 空气柱 晶格常数 带隙 ZnO photonic crystal plane-wave expansion method air hole lattice constant band gap
  • 相关文献

参考文献10

  • 1Yablonovitch E. Inhibited spontaneous emission in solid-state phys- ics and electronics [J]. Phys Rev Lett, 1987, 58(20) : 2059 - 2061.
  • 2John S. Strong localization of photons in certain disordered dielec- tile superlattices [J]. Phys Rev Lett, 1987, 58 (23) : 2486 - 2489.
  • 3欧阳征标,李景镇.光子晶体的研究进展[J].激光杂志,2000,21(2):4-6. 被引量:18
  • 4周梅,陈效双,徐靖,陆卫.硅基两维光子晶体的制备和光子带隙特性[J].物理学报,2004,53(10):3583-3586. 被引量:4
  • 5Plihal M, Maradudin A A. Photonic band structure of two-dimen- sional systems: the triangular lattice [ J ]. Phys Rev B, 1991,44 ( 16 ) :8565 - 8567.
  • 6Ho K M, Chan C T, Soukoulis C M. Existence of a photonic gap in periodic dielectric structures [ J ]. Phys Rev Lett, 1990,65 ( 25 ) : 3152 -3155.
  • 7Bierwirth K, Schulz N, Amdt F. finite-difference analysis of rec- tangular dielectric waveguide structures [ J ]. IEEE Trans Micro- wave Theory Technol, 1986,34(11 ) : 1104-1106.
  • 8Pendry J B, Mackinnon A. Calculation of photon dispersion rela- tions[ J]. Phys Rev Lett, 1992,69 (19) :2772 - 2775.
  • 9Wang X, Zhang X G, Yu Q, et al. Multiple-scattering theory for e- lectromagnetic waves [ J ]. Phys Rev B, 1993,47 ( 8 ) :4161 - 4164.
  • 10Leung K M, Qiu Y. Muhiple-seattering calculation of the two - di- mensional photonic band structure [ J ]. Phys Rev B, 1993,48 ( 11 ) :7767 -7770.

二级参考文献19

  • 1[1]Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
  • 2[2]Lin S Y 1998 Nature 394 251
  • 3[3](O)zbay E, Michel E, Tuttel G, Biswas R, Sigalas M and Ho K M 1994 Appl. Phys. Lett. 64 2559
  • 4[4]Wada M Doi Y, Inoue K, Haus J W and Yuan Z 1997 Appl. Phys. Lett. 70 2966
  • 5[5]McCall S L, Platzman P M, Dalichaouch R, Smith D and Schultz S 1991 Phys. Rev. Lett. 67 2017
  • 6[6]Krauss T, Rue R, De L and Band S 1996 Nature 383 699
  • 7[7]Brüning U, Lehmann V, Ottow S and Busch K 1996 Appl. Phys. Lett. 68 747
  • 8[8]Lin H B 1996 Appl. Phys. Lett. 68 1927
  • 9[9]Sakoda K 1995 Phys. Rev. B 51 4672
  • 10[10]Agio M and Andreani L C 2000 Phys. Rev. B 61 15519

共引文献20

同被引文献12

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部