期刊文献+

细菌觅食优化的智能PID控制 被引量:7

Intelligent PID controller based on bacterial foraging optimization
在线阅读 下载PDF
导出
摘要 传统的PID在控制过程中,尤其针对复杂被控对象易产生振荡和较大的超调,甚至控制系统无法稳定,为了解决这个问题,采用了一种新的基于细菌觅食优化(Bacterial Foraging Optimization,BFO)的智能PID控制方法,针对该算法收敛速度慢的缺陷,对步长及搜索范围做了一定的分析改进。通过与粒子群优化(Particle Swarm Optimization,PSO)智能PID参数整定控制的仿真结果比较,特别是在系统的动态性能指标以及输入信号的跟踪情况等方面进行对比分析,得出基于BFO智能PID控制的优缺点及有效性。 The traditional PID controller may easily lead to produce oscillation and big overshoot.Even the system is not stable in the control progress,especially for the complex system.In order to solve the problems,a new intelligent PID control method based on Bacterial Foraging Optimization(BFO) is used.This method is analyzed and improved.The simulation results are compared with the Particle Swarm Optimization(PSO) intelligent PID parameter tuning method,especially in the system dynamic performances and the input signal track.The advantages,disadvantages and effectiveness of the intelligent PID control based on BFO are shown from the simulation results.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第21期82-85,165,共5页 Computer Engineering and Applications
基金 浙江省教育厅重点项目(No.Z201017236)
关键词 PID控制 细菌觅食优化 粒子群优化 参数整定 PID control Bacterial Foraging Optimization(BFO) Particle Swarm Optimization(PSO) parameters tuning
  • 相关文献

参考文献14

  • 1Noor H A,Mahanijah M K,Faieza H Y.Application of PID con-troller in controlling refrigerator temperature[C]//5th Internation-al Colloquium on Signal Processing & Its Applications(CSPA), 2009: 378-384.
  • 2Khodabakhshian A, Hooshmand R.A new PID controller design for automatic generation control of hydropower systems[J].Elec-trical Power and Energy Systems, 2010,32 : 375-382.
  • 3Kim T H,Maruta 1,Sugie T.Robust PID controller tuning based on the constrained particle swarm optimization[J].Automatica, 2008, 44: 1104-1110.
  • 4Chanchal D, Rajani K M.An improved auto-tuning scheme for PID controllers[J].ISA Transactions, 2008,48: 396-409.
  • 5周阳花,魏敏,孙伟.基于权重QPSO算法的PID控制器参数优化[J].计算机工程与应用,2010,46(5):224-228. 被引量:4
  • 6Kim D H.Hybrid GA-BF based intelligent PID controller tuning for AVR system[J].Applied Soft Computing, 2010,11 : 11-22.
  • 7Kevin M EBiomimicry of bacterial foraging for distributed opti-mization and control[J].IEEE Control Systems Magazine, 2002, 22: 52-67.
  • 8Chen H N,Zhu Y L,Hu K Y.Self-adaptation in bacterial forag-ing optimization algorithm[C]//Proceedings of 3rd International Conference on Intelligent System and Knowledge Engineering, 2008 : 1026-1031.
  • 9Chen Y H, Lin W X.An improved bacterial foraging optimiza-tion[C]//IEEE International Conference on Robotics and Biomi-tactics, 2009: 2057-2062.
  • 10林卫星,Peter X.Liu,李文磊,陈炎海,欧超.细菌生存优化在非线性模型辨识中的应用[J].系统仿真学报,2009,21(10):3100-3104. 被引量:2

二级参考文献91

  • 1李威武,王慧,邹志君,钱积新.基于细菌群体趋药性的函数优化方法[J].电路与系统学报,2005,10(1):58-63. 被引量:92
  • 2夏伯才,郭永锋,姚向东,董杰,王永强.材料性能细菌捕食仿生优化[J].中国工程物理研究院科技年报,2003(1):198-199. 被引量:1
  • 3张晓缋,方浩,戴冠中.遗传算法的编码机制研究[J].信息与控制,1997,26(2):134-139. 被引量:93
  • 4Haber R, Keviczky L. Nonlinear system identification -Input-output modeling approach [M]. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1999.
  • 5Nelles O. Nonlinear system identification: From classical approaches to neural networks and fuzzy models [M]. Berlin Heidelberg: Springer Verlag, 2001.
  • 6Giannakis G B, Serpedin E. A bibliography on nonlinear system identification and its applications in signal processing, communications and biomedical engineering [J]. Signal Processing (S0165-1684), 2001, 81(3): 533-580.
  • 7Colomi A, Dorigo M, Maniezzo V. Distributed optimization by ant colonies [C]// Proceedings of ECAL'91, European Conference on Artificial Life. Paris, France: Elsevier Publishing, 1991: 134-142.
  • 8Eberhart R C, Kennedy J. A New Optimizer Using Particle Swarm Theory [C]//Proc. The Sixth Int. Symposium on Micro Machine and Human Science, Nagoya Japan: IEEE Robotics and Automation Society, 1995: 39-43.
  • 9Passino K M. Biomimicry of Bacterial Foraging for Distributed Optimization and Control [J]. IEEE Control Systems Magazine (S0272-1708), 2002, 22(3): 52-67.
  • 10Kim D H, Cho J H. Adaptive tuning of P1D controller for multivariable system using bacterial foraging based optimization [C]// Advances in WEB Intelligence, Proceedings Lecture Notes in Computer Science, Heidelberg: Springer Berlin, 2005, 3528: 231-235.

共引文献114

同被引文献43

  • 1李威武,王慧,邹志君,钱积新.基于细菌群体趋药性的函数优化方法[J].电路与系统学报,2005,10(1):58-63. 被引量:92
  • 2郭大庆,李晓,赵永进.基于改进PSO算法的PID参数自整定[J].计算机工程,2007,33(18):202-204. 被引量:20
  • 3Passino K M. Biomimicry of bacterial foraging for distributed optimization and control[ J ]. IEEE control systems magazine, 2002,22(3) :52-67.
  • 4Muller S, Marehetto J, Airaghi S, et al. Optimization based on bacterial ehemotaxis[ J ]. IEEE trans on evolutionary eomputa- t.ion ,2002,6( 1 ) :16-29.
  • 5Chen Hanning, Zhu Yunlong, Hu Kunyuan. Cooperative bacte- rial foraging algorithm for global optimization [ C ]//2009 中国控制与决策会议论文集.[s.1.]:[s.n.],2009:3896-3897.
  • 6Kim H D, Cho H J. Adaptive tuning of PID controller for multi- variable system using bacterial foraging based optimization [C]//Proceedings of 3rd international Atlantic Web intelli- gence conference on advances. New York: IEEE, 2005:231- 235.
  • 7Chen H C. Bacterial foraging based optimization design of fuzzy PID controllers[ C //Proceedings of 4th international confer- ence on intelligent computing. New York : IEEE, 2008 : 841 - 849.
  • 8Golipudi S V R S, Pattnaik S S, Bajpai 0 P, et al. Bacterial for- aging optimization technique to calculate resonant frequency of rectangular microstrip antenna[ ] ]. International journal of RF and microwave computer-aided engineering, 2008,18 (4) : 383 -388.
  • 9LIN S, KERNIGHAN B W. An effective heuristic algorithm for the traveling salesman problem [ J ]. Operation Research, 1973,21 (2) :498-516.
  • 10PASSINO K M. Biomimicry of bacteria foraging for distributed optimi- zation and control[ J]. IEEE Control Systems Magazine,2002,22 (3) :52-67.

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部