期刊文献+

集值优化问题的高阶最优性条件(借助Studniarski导数)(英文)

Higher-order Optimality Conditions for Set-Valued Optimization via Studniarski Derivatives
原文传递
导出
摘要 本文研究的是约束集值优化问题的高价最优性条件.首先通过借助集值映射的Stud-niarski导数和严格局部有效性,讨论了集值优化问题的高阶必要条件和充分条件.对于充分条件,初始空间必须是有限维的.其次在初始空间和目标空间是有限维的以及集值映射是m阶稳定的条件下,也得到了此约束集值优化问题的高阶最优性条件. This paper deals with higher-order optimality conditions of a set-valued optimiza- tion problem(SOP) whose constraint condition is determined by a fixed set. By virtue of Studniarski derivatives of set-valued maps and strict local efficiency, higher-order necessary and sufficient opti- mality conditions for SOP are obtained. For the sufficient conditions, the initial space must be finite dimensional. Higher-order optimality conditions for SOP are also investigated under the conditions that the initial and objective spaces are finite dimensional and the multifunction involved is ruth-order stable.
出处 《数学进展》 CSCD 北大核心 2011年第4期433-440,共8页 Advances in Mathematics(China)
基金 partially supported by NSFC(No.10871216) the Fundamental Research Funds for the Central Universities(No.CDJXS10100011)
关键词 Studniarski导数 严格局部有效解 高阶最优性条件 集值优化 Studniarski derivatives strict local minimizers higher-order optimality conditions set-valued optimization
  • 相关文献

参考文献17

  • 1Aubin, J.P., Frankowska, H., Set-Valued Analysis, Boston: Birkhauser, 1990.
  • 2Bonnans, J.F., Shapiro, A., Perturbation Analysis of Optimization Problems, New York: Springer, 2000.
  • 3Jahn, J., Vector Optimization-Theory, Applications, Extensions, Berlin: Springer, 2004.
  • 4Luc, D.T., Theory of Vector Optimization, Berlin: Springer, 1989.
  • 5Hestenes, M.R., Calculus of Variations and Optimal Control Theory, New York: Wiley, 1966.
  • 6Hestenes, M.R., Optimization theory, The Finite Dimensional Case, New York: Wiley, 1975.
  • 7Auslender, A., Stability in mathematical programming with nondifferentiable data, SIAM J. Cont. Optim., 1984, 22: 239-254.
  • 8Studniarski, M., Necessary and sufficient conditions for isolated local minima of nonsmooth functions, SIAM J. Cont. Optim., 1986, 24: 1044-1049.
  • 9Ward, D.E., Characterizations of strict local minima and necessary conditions for weak sharp minima, J. Optim. Theory Appl., 1994, 80: 551-571.
  • 10Jimenez, B., Strict efficiency in vector optimization, J. Math. Anal. Appl., 2002, 265: 264-284.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部