期刊文献+

求解资源受限项目调度问题的约束规划/数学规划混合算法 被引量:13

Combination of constraint programming and mathematical programming for solving resources-constrained project-scheduling problems
在线阅读 下载PDF
导出
摘要 利用约束规划(constraint programming,CP)与数学规划(mathematical programming,MP)结合的方法求解调度问题已经获得了一些较好的研究成果,正成为调度问题研究领域的一个新的热点研究方向.本文针对求解资源受限项目调度问题(RCPSP)的整数规划模型,设计了基于CP技术的问题和模型预处理方法,证明了整数规划模型的有效不等式定理,提出了通过将项目子网络图转化为加权最大团问题求解后获得有效不等式的方法.引用标准问题库PSPLIB中的一组典型问题进行求解实验,结果表明本文提出的有效不等式可以明显改进模型的求解质量和时间性能.论文最后对实验结果进行了深入讨论,讨论了未来的研究方向. Combining constraint programming(CP) and mathematical programming(MP) to solve scheduling problems has been an interesting topic for researchers, and promising results are obtained. We propose a preprocessing approach for solving resource-constrained project-scheduling problems(RCPSP) with integer programming(IP) model, and prove an effective inequality theory for the IP model. The effective inequality can be obtained by solving a maximum clique problem which is built on a sub-network of the original project. A detailed computational experiment is performed using the well-known standard instances in PSPLIB. Computational results show that the proposed effective inequality remarkably improves the performances of the IP model. Finally, the computational results are analyzed and future research directions are discussed.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2011年第8期1113-1120,共8页 Control Theory & Applications
基金 国家自然科学基金资助项目(71021061 70771020) "863"计划/先进制造技术领域专题资助项目(2007AA04Z194) 中央高校基础科研业务费资助项目(N100504001)
关键词 项目调度 资源受限 整数规划 约束规划 有效不等式 最大团问题 project scheduling resource-constrained integer programming constraint programming effective inequality maximum clique problem
  • 相关文献

参考文献37

  • 1BRUCKER P, DREXL A, MOHRING R, et al. Resource-constrained project scheduling: notation, classification, models, and methods[J]. European Journal of Operational Research, 1999, 112(1): 3 - 41.
  • 2PRITSKER A, WATTERS L, WOLFE P. Multi-project scheduling with limited resources: a zero-one programming approach[J]. Management Science, 1969, 16(1): 93- 108.
  • 3CHRISTOFIDES N, ALVAREZ-VALDES R, TAMARIT J M. Project scheduling with resource constraints: a branch and bound approach[J]. European Journal of Operational Research, 1987, 29(3): 262 - 273.
  • 4DEMEULEMEESTER E L, HERROELEN W S. A branch-and- bound procedure for the multiple resource-constrained project scheduling problem[J]. Management Science, 1992, 38(12): 1803 -1818.
  • 5ALVAREZ-VALDE R, TAMARIT J M. The project scheduling polyhedron: Dimension, facets and lifting theorems[J]. European Journal of Operational Research, 1993, 67(2): 204- 220.
  • 6DEMEULEMEESTER E L, HERROELEN W S. New benchmark results for the resource-constrained project scheduling problem[J]. Management Science, 1997, 43(11): 1485 - 1492.
  • 7BRUCKER P, KNUST S, SCHOO A, et al. A branch and bound algorithm for the resource-constrained project scheduling problem[J]. European Journal of Operational Research, 1998, 107(2): 272 - 288.
  • 8MINGOZZI A, MANIEZZO V, RICCIARDELLI S, et al. An exact algorithm for the resource-constrained project scheduling problem based on a new mathematical formulation[J]. Management Science, 1998, 44(5): 714 - 729.
  • 9MOHRING R H, SCHULZ A S, STORK F, et al. Solving project scheduling problems by minimum cut computations[J]. Management Science, 2003, 49(3): 330 - 350.
  • 10DORNDORF U, PESCH E, PHAN-HUY T. A time-oriented branch- and-bound algorithm for project scheduling with generalized precedence constraints[J]. Management Science 2000, 46(10): 1365 - 1384.

二级参考文献20

  • 1冯欣,唐立新,王梦光.动态加强CPT解job-shop调度约束满足优化问题[J].系统工程学报,2006,21(6):583-590. 被引量:1
  • 2郭冬芬,李铁克.基于约束满足的车间调度算法综述[J].计算机集成制造系统,2007,13(1):117-125. 被引量:34
  • 3Carlier J, Pinson E. An algorithm for solving the job shop problem. Management Science, 1989, 35(2): 164-176.
  • 4Muth J F, Thompson G L. Industrial Scheduling. New Jersey: Prentice-Hall, 1963.
  • 5Baptiste P, Le Pape C, Nuijten W. Constraint Based Scheduling. Amsterdam: Kluwer, 2001.
  • 6Nuijten W. Time and Resource Constrained Scheduling: A Constraint Satisfaction Approach [Ph.D. dissertation], Eindhoven University of Technology, Eindhoven, Netherlands, 1994.
  • 7Mercier L, Hentenryck P V. Strong polynomiality of resource constraint propagation. Discrete Optimization, 2007, 4(3-4): 288-314.
  • 8Mercier L, Hentenryck P V. Edge finding for cumulative scheduling. Informs Journal on Computing, 2008, 20(1): 143-153.
  • 9Tercinet F, Neron E, Lente C. Energetic reasoning and binpacking problem, for bounding a parallel machine scheduling problem. 4OR: A Quarterly Journal of Operations Research, 2006, 4(4): 297-317.
  • 10Carlier J, Pinson E. Adjustments of heads and tails for the job shop problem. European Journal of Operational Research, 1994, 78(2): 146-161.

共引文献7

同被引文献157

引证文献13

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部