期刊文献+

应用视觉注意多分辨率分析的图像检索 被引量:4

Image retrieval using multiresolution analysis of visual attention
原文传递
导出
摘要 基于人类视觉感知理论,提出一个改进的Itti视觉注意模型用于图像检索。该改进视觉注意模型是在充分考虑纹理特征与视觉感知关系的基础上,构造一个粗糙度图,用作视觉注意模型的一个初级视觉特征。首先通过该改进视觉注意模型得到50个视觉特征图;然后分别对每个视觉特征图采用局部二值模式傅里叶直方图(LBPHF)方法抽取其分布信息,从而获得每幅图像的高维特征;最后利用局部保持投影(LPP)方法进行维数约简,以获取具有图像间局部几何和鉴别信息的低维特征用于图像检索。实验结果表明,该算法能获得较好的检索效果。 In this paper, based on biologic visual information processing, an improved Itti' s visual attention model is proposed for image retrieval. By considering the relation between texture and visual perception, a coarseness map is constructed as a primary visual feature of the new visual attention model. Therefore, by the improved Itti' s model, we can obtain 50 feature maps, and extract the distributions information over the local binary pattern histogram fourier (LBP-HF) of each feature maps to get the high dimensional features. Finally, the locality preserving projections (LPP) is utilized for dimensionality reduction, and the low dimensional feature having both the local geometry and the discriminate information is used for image retrieval. Experimental results show that the proposed approach has good retrieval performance.
作者 黄传波 金忠
出处 《中国图象图形学报》 CSCD 北大核心 2011年第9期1656-1663,共8页 Journal of Image and Graphics
基金 国家自然科学基金项目(60973098 60873151 90820306)
关键词 图像检索 视觉注意模型 视觉特征图 LBP—HF算子 image retrieval visual attention model visual feature map LBP-HF operator
  • 相关文献

参考文献15

  • 1Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex[ J]. Journal of Physiology, 1962,160 ( 1 ) : 106-154.
  • 2Olshausen B A. Field D J. Emergence of simple- cell receptive field properties by learning a sparse code for natural images [ J ]. Nature, 1996,381 ( 13 ) :607-609.
  • 3张菁,沈兰荪,David Dagan Feng.基于视觉感知的图像检索的研究[J].电子学报,2008,36(3):494-499. 被引量:32
  • 4Stentiford F. An attention based similarity measure with application to content-based information retrieval [ C ] // Storage and Retrieval for Media Databases, Santa Clara, CA, USA : SPIE Electronic Imaging,2003,5021:221-232.
  • 5IttiL,Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20 ( 11 ) : 1254-1259.
  • 6Treisman A, Gelade G. A feature- integration theory of attention [ J ]. Cognitive Psychology, 1980,12 ( 1 ) :97-136.
  • 7Ahonen T, Matas J, He C, et al. Rotation invariant image description with local binary pattern histogram Fourier features [ C ]//Proceedings of 16th Scandinavian Conference on Image Analysis. Berlin: Springer-Varlag,2009,5575:61-70.
  • 8He X F, Niyogi P. Locality Preserving Projections [ DB/OL ] (2003-12- 08 ) [ 2010-11 - 01 ]. http ://books. nips. cc/nipsl6. html.
  • 9Ojala T, Pietikainen M, Maenpaa T. Muhiresolution grayscale and rotation invariant texture classification with local binary patterns[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24 ( 7 ) : 971 - 987.
  • 10刘丽,匡纲要.图像纹理特征提取方法综述[J].中国图象图形学报,2009,14(4):622-635. 被引量:436

二级参考文献43

共引文献469

同被引文献54

  • 1周成虎.洪涝灾害遥感监测研究[J].地理研究,1993,12(2):63-68. 被引量:27
  • 2周寅康.中国近五百年流域性洪涝统计特征研究[J].自然灾害学报,1995,4(3):23-28. 被引量:6
  • 3柏延臣,王劲峰.遥感数据专题分类不确定性评价研究:进展、问题与展望[J].地球科学进展,2005,20(11):1218-1225. 被引量:31
  • 4OJALA T, PIETIKAINEN M, HARWOOD D. A comparative study of texture measures with classification based on featured distributions [ J]. Pattern Recognition, 1996, 29(1) : 51 - 59.
  • 5HEIKKILA M, PIETIKINEN M, SCHMID C. Description of inter- est regions with local binary patterns [ J]. Pattern Recognition, 2009, 42(3): 425-436.
  • 6MURALA S, WU J. Local mesh patterns versus local binary pat- terns: biomedical image indexing and retrieval[ J]. IEEE Journal of Biomedical and Health Informatics, 2014, 18(3):929 -938.
  • 7DASGUPTA A, GEORGE A, HAPPY S L, et al. A vision-based system for monitoring the loss of attention in automotive drivers[ J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14 (4) : 1825 - 1838.
  • 8ZHAO G, AHONEN T, MATAS J, et al. Rotation-invariant image and video description with local binary pattern features[ J]. IEEE Transactions on Image Processing, 2012, 21(4): 1465 -1477.
  • 9GUO Y, ZHAO G, ZHOU Z, et al. Video texture synthesis with multi-frame LBP-TOP and diffeomorphic growth model[J]. IEEE Transactions on Image Processing, 2013, 22( 10): 3879 -3891.
  • 10FANG Y C, WANG Z. Improving LBP features for gender classifica- tion[ C] // Proceedings of the 2008 IEEE Conference on Wavelet A- nalysis and Pattern Recognition. Piscataway: IEEE, 2008: 373- 377.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部