期刊文献+

基于二氧化硅球腔微电极阵列的过氧化氢生物传感器制备 被引量:4

Fabrication of Hydrogen Peroxide Biosensors Based on Microelectrode Array of Silicon Dioxide Cavities
在线阅读 下载PDF
导出
摘要 以聚苯乙烯(PS)微球阵列为模板,采用溶胶-凝胶法在氧化铟锡(ITO)电极上制备了二氧化硅(SiO2)球腔阵列,扫描电镜显示此方法制备的SiO2球腔阵列高度有序。电化学研究结果表明,该球腔阵列的循环伏安曲线符合微电极阵列的电化学特点。将血红蛋白(Hb)作为氧化还原模型蛋白直接吸附于球腔内,制得电流型过氧化氢(H2O2)生物传感器,研究了Hb在该微电极阵列上的直接电化学和电催化性质。所构建的传感器对H2O2的响应快速灵敏,其线性范围为2.03×10-6~1.21×10-5mol/L和2.03×10-5~1.21×10-2mol/L;检出限为5.73×10-7mol/L,米氏常数为0.266 mmol/L。 A silicon dioxide(SiO2) cavities array was fabricated on indium-tin oxide(ITO) electrode surface with the template of the polystyrene(PS) particles array by using sol-gel technique.The morphology of SiO2 cavities array was highly ordered which was obtained by scanning electrode microscope.The results of electrochemistrical study showed that the cyclic voltammetric(CV) curve of SiO2 cavities array was in accordance with that of microelectrodes array.Using hemoglobin(Hb) as model protein,an amperometric biosensor for detection of H2O2 was prepared by adsorbing Hb in SiO2 cavities directly.The properties of direct electrochemistry and electrocatalysis of Hb were studied by CV method.The response of the biosensor for H2O2 was fast.A linear relationship between current response and the concentration of H2O2 ranging from 2.03×10-6 to 1.21×10-2 mol/L was obtained with a detection limit of 5.73×10-7 mol/L.And the apparent Michaelis-Menten constant was 0.266 mmol/L.
出处 《分析化学》 SCIE EI CAS CSCD 北大核心 2011年第9期1313-1317,共5页 Chinese Journal of Analytical Chemistry
基金 国家自然科学基金(No.20975073) 江苏省自然科学基金(No.BK2008147) 常熟市2009年拔尖人才资助项目
关键词 溶胶-凝胶法 二氧化硅球腔 微电极阵列 血红蛋白 生物传感器 Sol-gel technique Silicon dioxide cavities Microelectrode array Hemoglobin Biosensor
  • 相关文献

参考文献18

  • 1佟巍,张纪梅,张丽.电化学生物传感器的应用研究进展[J].武警医学院学报,2008,17(1):62-64. 被引量:8
  • 2谢锦春,崔志立,薛峰,张晔晖,徐晓洁.超微电极技术与应用[J].分析测试技术与仪器,2004,10(2):101-106. 被引量:7
  • 3Lee C Y, Tan Y J, Bond A M. Anal. Chem. , 2008, 80(10) : 3873-3881.
  • 4Xia Y, Whitesides G M. Chem. Int. Ed. Engl. , 1998, 37(50): 550-575.
  • 5Tuan V A, Weber L L, Falconer J I.. Ind. Eng. Chem. Res. , 2003, 42(13) : 3019-3021.
  • 6Zhou Q, ZhaoJ J, Xu WW, Zhao H, Wu Y, ZhengJ W. J. Phys. Chem. C, 2008, 112(7): 2378-2381.
  • 7池晓雷,陆婷,汪学英,尹凡.微电极阵列的制备及电化学性质的研究[J].常熟理工学院学报,2010,24(2):52-55. 被引量:7
  • 8Holland T B, Blanford C F, Do T. Chem. Mater. , 1999, 11(3) : 795-805.
  • 9Davies T J, Ward Jones S, Banks C E, Campo J, Mas R, Munoz F X, Compton R G. J. Electroanal. Chem. , 2005, 585(1):51-62.
  • 10DaviesT J, ComptonRG. J. Electroanal.Chem. , 2005, 585(1): 63-69.

二级参考文献48

  • 1Xia Y, Whitesides G M. Soft lithography [J]. Angew Chem Int Ed Engl, 1998, 37: 550-575.
  • 2Xia Y, Whitesides G M. Soft lithography [J]. Annu Rev Mater Sci, 1998, 28: 153-184.
  • 3Braun P V, Wihzius P. Electrochemically grown photonic crystals [J]. Nature, 1999, 402: 603-604.
  • 4Netti M C, Coyle S, Baumberg J J, et al. Confined surface Plasmons in Gold Photonic Nanocavities[J]. Adv Mater, 2001, 13: 1368-1370.
  • 5Kosiorek A, Kandulski W, Chudzinski P, et al. Shadow Nanosphere Lithography: Simulation and Experiment [J]. Nano Lett, 2004, (4): 1359-1363.
  • 6Shimmin R G, DiMauro A J, Braun P V. Slow vertical deposition of colloidal crystals: A Langmuir-Blodgett process [J]. Langmuir, 2006, 22: 6507-6513.
  • 7Aveyard R, Clint J H, Nees D, et al. Compression and structure of monolayers of charged latex particles at air/water and octane/water interfaces [J]. Langmuir, 2000, 16: 1969-1979.
  • 8Pauport e Th, Lincot D. Hydrogen peroxide oxygen precursor for zinc oxide electrodeposition lI--Mechanistie aspects [J]. J Electroanal Chem, 2001, 517: 54-62.
  • 9Lai M, Riley D J. Templated electrosynthesis of Zinc Oxide Nanorods [J]. Chem Mater, 2006, 18: 2233.
  • 10Gavino S,Marie I P,Paola C P.Microelectrodes for the determination of heavy metal traces in physiological conditions.Hg,Cu and Zn ions in synthetic saliva[J].Electroanalysis,2002,14:1 512-1 520.

共引文献19

同被引文献35

  • 1朱建中,刘晓辉,吴佳俐,陆德仁,林心如,张国雄.微电极阵列若干电化学特性的研究[J].分析化学,1994,22(1):6-9. 被引量:3
  • 2邹绍芳,范影乐,王平.基于微电极阵列的自动环境监测电子舌的设计[J].仪器仪表学报,2007,28(9):1641-1645. 被引量:8
  • 3JUSTIN M K, WIGHTMAN R M. Microelectrodes forStudying Neurobiology [J]. Chemical Biology, 12,2008.491-496.
  • 4ZHOU Q,ZHAO J J, XU W W, ZHAO H, WU Y,ZHENG J W. Formation of two -dimsional orderedcacites of zine oxide and their confinement effect onelectrochemical reactions [J]. J. Phys. Chem. C,111,2008.2378-2381.
  • 5GEORGE M, PARAK W J,GERHARDT I. Investigation of the spatial resolution of the light addressablepotentiometric sensor[J]. Sens Actuators B, 86,2000.187-196.
  • 6ZOSKI C G, YANG N J, HE P X. Addressable nano-electrode membrane arrays: fabrication and steady -state behaviorfj]. Anal Chem, 79,2007.1474-1484.
  • 7KARYAKI A A, KARYAKINA E E, GORTON L. Onthe mechanism of Hj02 reduction at Prussian Bluemodified electrodes[J].Electrochem.Commun, ,1999.78-82.
  • 8KARYAKIN A A’ ELENA1 E K, GORTON L. Ampero-metric biosensor for glutamate using Prussian bluebased “artificial peroxidase” as a transducer for hydro-gen peroxide[J].AnalChem, 72,2000.1720-1723.
  • 9Holland T B, Blanford C F, Do T. Syntesis of highly ordered, three-dimensional, macroporous structures of amorps or crystalline in-organic oxides, phosphates, and hybrid composites [J]. Chem Mater, 1999, 11(2): 795-805.
  • 10丁海云,杨圣婴,李一峻,何锡文.纳米级普鲁士蓝的制备表征及其在电分析化学中的应用[J].分析测试学报,2008,27(1):97-102. 被引量:6

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部