摘要
对1.5级涡轮叶片在旋转状态下不同吹风比时的气膜冷却特性进行了实验研究.实验中基于动叶弦长的涡轮进口主流雷诺数为1.645 1×105,冷却工质采用二氧化碳,对应主流射流密度比为1.57,实验涡轮转速为475 r/min,对应旋转数为1.901,吹风比为0.5~2.0.采用稳态液晶方法测温.结果表明:①压力面上,随吹风比的增大,气膜冷却效率升高,气膜覆盖区域增大,气膜轨迹的偏转程度减弱;②吸力面上,随吹风比的增大,气膜冷却效率先上升后下降,气膜覆盖区域亦先增加后减少,气膜轨迹的偏转程度不明显;③射流流动的曲率半径影响气膜对壁面的附着.
Experimental investigations were carried out to study the rotating film cooling characteristics at different blowing ratios in a 1.5-turbine stage. The mainstream Reynolds number Reg is 1. 645 1 ×10^5 in the experiment. CO2 acts as a coolant with mainstream jet density ratio of 1.57. Turbine speed is 475 r/min, and the rotation number is 1. 901. The blowing ratio varies from 0.5 to 2.0. By using steady-state liquid crystal method, the results show that: (1) On pressure side, the film cooling efficiency and the film coverage increase, the deflection angle of film trajectory decreases with the increasing blowing ratio. (2) On suction side, the film cooling efficiency and the film coverage first increase and then decrease, the film trajectory has no obvious deflection angle with the increasing blowing ratio. (3) The curvature radius of jet flow affects the adhesion of film on the wall.
出处
《航空动力学报》
EI
CAS
CSCD
北大核心
2011年第7期1452-1457,共6页
Journal of Aerospace Power
关键词
气膜冷却
旋转
吹风比
冷却效率
涡轮叶片
曲率半径
film cooling
rotation
blowing curvature radius ratio
cooling efficiency
turbine blade