期刊文献+

基于总体表面属性特征的森林资源抽样调查方法比较 被引量:6

Comparison of Sampling Survey Methods of Forest Resources for Populations with Different Surface Attributes
在线阅读 下载PDF
导出
摘要 以南京紫金山国家森林公园的6个景区为抽样总体,以GIS为分析平台,以2002年数字化的森林资源二类调查数据为主要信息源,在分析各个总体相关性、异质性、聚集性3个表面属性特征基础上,分别采用简单随机抽样、系统抽样、空间简单随机抽样、空间分层抽样、空间平衡抽样方法对单位面积蓄积量进行了抽样估计,并从抽样平均误差、抽样效率2个方面对各种抽样方法进行了评价,以确定不同表面属性特征总体的最优抽样设计方案。研究表明:对于空间异质性强、调查因子空间弱相关、近似于空间随机分布的调查区域,可以选择经典抽样、空间抽样多种方法;对于空间异质性较强、调查因子空间强相关、呈空间聚集分布的调查区域,可以优先考虑空间分层抽样;空间异质性较弱、调查因子空间弱相关、近似于空间随机分布的调查区域,则可以选择空间平衡抽样。 Six zones in Zijin Mountain National Forest Park were selected as sampling populations, and digital forest resource inventor, data in 2002 were used as the main information source. Surface attributes of the six populations were analyzed from three aspects of spatial correlation, heterogeneity and aggregation. Sampling estimation of volume per unit area was made by simple random sampling, systematic sampling, spatial simple random sampling, spatial stratified sampling and spatial balanced sampling. The optimal sampling design for the populations with different surface attributes was screened in terms of sampling average error and sampling efficiency. Results show that traditional sampling and spatial sampling methods are suitable for populations with strong heterogeneity, weak spatial correlation and approximate spatial random pattern; spatial stratified sampling method is the best for populations with strong heterogeneity, strong spatial correlation and aggregated spatial pattern; spatial balanced sampling method is appropriate for populations with weak heterogeneity, weak spatial con-elation and approximate random spatial pattern.
机构地区 南京林业大学
出处 《东北林业大学学报》 CAS CSCD 北大核心 2011年第9期49-51,64,共4页 Journal of Northeast Forestry University
基金 国家自然科学基金(30972298)
关键词 森林资源 抽样设计 表面属性 Forest resources Sampling design Surface attributes
  • 相关文献

参考文献10

  • 1李明阳,刘敏,刘米兰.基于GIS的森林调查因子地统计学分析[J].南京林业大学学报(自然科学版),2010,34(6):66-70. 被引量:13
  • 2Haining R P. Estimating spatial means with an application to remote sensing, data [ J ]. Communication Statistics-Theory and Methodology, 1988,17(2) :537-597.
  • 3Ripley B D. Spatial Statistics[ M]. Chichester: John Wiley,1981.
  • 4Foody G M. Status of land cover classification accuracy assessment [ J ]. Remote Sensing nf Environment ,2002,80 ( 1 ) : 185-201.
  • 5Stehman S V, Sohl T L, Loveland T R. Statistical sampling to characterize recent United States landcover change[J]. Remote Sensing of Environment ,2003,86(4) :517-529.
  • 6Wang Jinfeng, Liu .liyuan, Zhuang Dafang, et al. Spatial sampling design for monitoring cultivated land [ J]. International Journal of Remote Sensing ,2002,23 ( 2 ) :263-284.
  • 7Stevens D L. Yariable density grid-based sampling designs for continuous spatial populations[J]. Environmetrics ,1997,8(3) :167-195.
  • 8Arthur G, Ord J K. The analysis of spatial association by use of distance statistics [ J ]. Geographical Analysis, 1992,24 ( 3 ) : 189-206.
  • 9李明阳,张向阳,吴文浩,席庆.基于GIS的森林资源调查空间平衡抽样方法研究[J].林业资源管理,2008(4):137-142. 被引量:12
  • 10Stehman S V. Basic probability sampling designs for thematic map accuracy assessments [ J ]. International Journal of Remote Sensing, 1999,20(12) :2423-2441.

二级参考文献17

  • 1刘安兴,蔡良良,佘光辉.森林资源二类调查新颁规定的应用分析[J].南京林业大学学报(自然科学版),2006,30(2):127-130. 被引量:8
  • 2Stevens Don L Jr. Variable density grid - based sampling designs for continuous spatial populations [J].Environmetrics, 1997, 8: 164 - 195.
  • 3Stevens Don L Jr,Olsen Anthony R. Spatially balanced sampling of natural resources[J]. Journal of the American Statistical Association. 2004,99(465) :262 - 278.
  • 4Stehman Slemphen V. Basic probability sampling designs for themarie map accuracy assessment[J].International Journal of Remote Sensing, 1999,20 ( 12 ) : 2423 - 2441.
  • 5Stevens Don L Jr, Olsen Anthony R. Variance estimation for spatially balanced samples of environmental resources[J ]. Environmetrics, 2003,14:593 - 610.
  • 6Mark David M. Neighbor- based properties of some orderings of two-dimensional space[J]. Geographical Analysis, 1990,2:145 - 157.
  • 7Tobler W R. A computer movie simulating urban growth in the Detroit region [ J ]. Economic Geography, 1970, 46 : 234 - 240.
  • 8Matheron G.Principles of geostatistics[J].Economic Geology,1963,58:1246-1266.
  • 9Arthur G,Ord J K.The analysis of spatial association by use of distance statistics[J].Geographical Analysis,1992,24(3):127-145.
  • 10David E.Statistics in Geography[M].Oxford:Basil Blackwell,Ltd,1985.

共引文献23

同被引文献89

引证文献6

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部