摘要
本文研究了一类中立型向量双曲偏微分方程边值问题的振动性.利用Domslak引进的H-振动的概念及内积降维的方法,将多维振动问题化为一维泛函微分不等式正解的不存在性问题,获得了该类边值问题在Dirichlet边界条件下所有解H-振动的若干新的充分条件,其中H是Rm中的单位向量.
In this article,we investigate the oscillations of boundary value problems for a class of neutral vector hyperbolic partial differential equations.By employing the concept of H-oscillation introduced by Domslak and the method of reducing dimension with scalar product,we reduce the multi-dimensional oscillation problems to the nonexistence problems of positive solutions of one-dimensional functional differential inequalities,some new sufficient conditions for the H-oscillation of all solutions of the boundary value problems are obtained under Dirichlet boundary condition,where H is a unit vector of R^m.
出处
《数学杂志》
CSCD
北大核心
2011年第5期893-898,共6页
Journal of Mathematics
基金
国家自然科学天元基金资助项目(10626033)
湖南省教育厅资助科研项目(07C164)
关键词
中立型
双曲型
向量偏微分方程
H-振动性
neutral type
hyperbolic
vector partial differential equation
H-oscillation.