期刊文献+

一种基于张量和洛仑兹几何的降维方法 被引量:5

A Novel Dimensionality Reduction Method Based on Tensor and Lorentzian Geometry
在线阅读 下载PDF
导出
摘要 传统的基于向量的降维算法,将大小为m×n的灰度图像,作为Rm×n中的向量进行处理.但这种表示方法往往造成图像像素空间局部信息的丢失,因此不能很好地描述图像的结构信息.本质上,灰度图像可以看成是一个二阶张量,而图像的各种特征(如Gabor和LBP特征等)往往需要用更高阶的张量来描述.本文从图像特征的张量表示出发,将新近提出的洛仑兹投影判别法(Lorentzian discriminant projection,LDP)推广到张量空间中,提出张量LDP.对于灰度图像,该方法直接利用图像的灰度矩阵(二阶张量)进行运算,从而很好地保持了图像像素的局部结构信息.另外,该方法还可以自然地推广到高维张量空间来处理更复杂的图像特征,如Gabor和LBP特征等.经人脸和纹理识别实验的验证,该算法效率高且能达到较高的识别率. Traditional vector-based dimensionality reduction algorithms consider an m×n image as a high dimensional vector in Rm×n. However, because this representation usually causes the lost of the local spatial information, it can not describe the image well. Intrinsically, an image is a 2D tensor and some feature extracted from the image (e.g. Gabor feature, LBP feature) may be a higher tensor. In this paper, we consider the nature of the image feature and propose the tensor Lorentzian discriminant projection algorithm, which can be considered as the tensor generation of the newly proposed Lorentzian discriminant projection (LDP). With regard to an image, this algorithm directly uses the hue matrix to compute, so it keeps the local spatial information well. In addition, this method can be naturally extended to the higher tensor space to deal with more complicated image features, such as Gabor feature and LBP feature. The experimental results on face and texture recognition show that our algorithm achieves better recognition accuracy while being much more efficient.
出处 《自动化学报》 EI CSCD 北大核心 2011年第9期1151-1156,共6页 Acta Automatica Sinica
基金 中央高校基本科研业务费专项资金 国家自然科学基金-广东联合基金(U0935004)资助~~
关键词 张量 数据降维 洛仑兹几何 人脸识别 纹理识别 Tensor, dimensionality reduction, Lorentzian geometry, face recognition, texture recognition
  • 相关文献

参考文献20

二级参考文献86

共引文献154

同被引文献32

  • 1Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720.
  • 2He X F, Yan S C, Hu Y X, Niyogi P, Zhang H J. Face recognition using Laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340.
  • 3Sugiyama M. Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis. Journal of Machine Learning Research, 2007, 8(1): 1027-1061.
  • 4Yan S C, Xu D, Zhang B Y, Zhang H J, Yang Q, Lin S. Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1): 40-51.
  • 5Lei Y K, Ding Z G, Hu R X, Zhang S W, Jia W. Orthogonal local spline discriminant projection with application to face recognition. Pattern Recognition Letters, 2011, 23(4): 615 -625.
  • 6Gu X H, Gong W G, Yang L P. Regularized locality preserving discriminant analysis for face recognition. Neurocomputing, 2011, 74(17): 3036-3042.
  • 7Li M, Yuan B Z. 2D-LDA: a statistical linear discriminant analysis for image matrix. Pattern Recognition Letters, 2005, 26(5): 527-532.
  • 8Yu W W. Two-dimensional discriminant locality preserving projections for face recognition. Pattern Recognition Letters, 2009, 30(15): 1378-1383.
  • 9He X F, Cai D, Niyogi P. Tensor Subspace Analysis. California: MIT Press, 2006. 499-507.
  • 10Wang J G, Sung E, Yau W Y. Incremental two-dimensional linear discriminant analysis with applications to face recognition. Network and Computer Applications, 2010, 33(3): 314-322.

引证文献5

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部