期刊文献+

HMM技术在数控镗刀状态监测中的应用 被引量:1

The application of tool control monitoring in CNC boring based on HMM technology
在线阅读 下载PDF
导出
摘要 通过对声发射传感器采集的刀具磨损状态信号进行分析,提取出反映刀具磨损状态的特征向量MFCC系数及差分系数,然后利用HMM进行信号处理。建立了检测镗刀刀具状态的监测系统。实验结果表明,该监测系统在刀具的正常磨损阶段,可以实现刀具大致磨损量的预报;在刀具破损或损坏情况下,能够及时监测和预报刀具损坏状态。这种监测方法能够进行实时在线监测,为刀具的磨损监测提供了一条切实可行的途径。 Signals of acoustic emission sensors about tool wear are analyzed,feature vectors reflecting tool wear MFCC coefficient and differential coefficient are extracted.Signals are processed by HMM.A test boring tool condition monitoring system is established.Experimental results show that the tool monitoring system can roughly forecast tool wear in the normal wear stage,and also can timely monitor and forecast tool damage to the state in the case of tool breakage or damage.This monitoring method can be real-time online monitoring of tool wear.It provides a practical way for tool condition monitoring.
出处 《制造技术与机床》 CSCD 北大核心 2011年第10期122-125,共4页 Manufacturing Technology & Machine Tool
基金 湖南省教育厅资助科研项目(项目编号09C1307)
关键词 镗刀磨损监测 梅尔系数 隐马尔可夫模型 Boring Tool Wear Monitoring Mel Frequency Cepstrum Coefficient Hidden Markov Model
  • 相关文献

参考文献7

二级参考文献67

  • 1翁德玮,邵华,王海丽.多传感器刀具状态监控系统[J].机械制造,2004,42(6):11-14. 被引量:6
  • 2王太勇,郭千里,赵国立,曾子平.刀具磨损声振特性的功率谱分析[J].天津大学学报,1995,28(4):582-584. 被引量:9
  • 3柳庆,李斌,吴雅.应用人工神经网路监测切削颤振[J].制造技术与机床,1995(12):17-19. 被引量:2
  • 4Ghasempoor A,Moore T N,Jeswiet J.On-line wear estimation using neural networks[C] //Proceedings of the Institution of Mechanical Engineers-B,1998:105-112.
  • 5Silva R G,Baker K J,Wilcox S J,et al.The adaptability of a tool wear monitoring system under changing cutting conditions[J].Mechanical Systems and Signal Processing,2000,14:287-298.
  • 6Leem C S,Dornfeld D A.Design and implementation ofsensor-based tool-wear monitoring systems[J].Mechanical Systems and Signal Processing,1996,10:439-458.
  • 7Dan L,Mathew J.Tool wear and failure monitoring techniq-ues for turning-A review[J].International Journal of Machine Tools and Manufacture,1990,30:579-598.
  • 8Snr Dimla E Dimla.Sensor signals for tool wear monitoring in metal cutting operations-a review of methods[J].Int.J.Mach.Tool Manuf,2000,40:1073-1098.
  • 9Ertunc H M,Oysu Cuneyt.Drill wear monitoring using cut-ting force signals[J].Mechatronics,2004,14:533-548.
  • 10Ertunc H M,Loparo K A.A decision fusion algorithm fortool wear condition monitoring in drilling[J].Int.J.Mach.Tool Manuf,2001,41:1347-1362.

共引文献56

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部