期刊文献+

严格π-正则半群上的fuzzy同余 被引量:1

Fuzzy Congruences on Strictly π-Regular Semigroups
在线阅读 下载PDF
导出
摘要 π-正则半群S称为严格π-正则的,如果其正则元集为S的理想且为S的完全正则子半群。这里利用半群fuzzy同余的概念,研究了π-正则半群上fuzzy同余的性质。在此基础上,给出了严格π-正则半群上fuzzy同余的性质和特征,并给出了严格π-正则半群上群同余的刻画,得到了严格π-正则半群上fuzzy同余为fuzzy群同余的充要条件。 A π-regular semigroup S is called strictly π-regular, if the set of regular elements of S is an ideal of S and is a completely regular subsemigroup of S. We use the notion of a fuzzy congruence relation on semigroups to study some properties of fuzzy congruences on π-regular semigroups. Some properties and characterizations of fuzzy congruences on strictly π-regular semigroups are given, and the group congruence on such semigroups is obtained. Finally, sufficient and necessary conditions for a fuzzy congruence on a strictly π-regular semigroup to be a fuzzy group congruence are proved.
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第5期11-14,共4页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学基金资助项目(11061014) 江西省自然科学基金资助项目(2007GZS0715) 江西省教育厅科研基金资助项目(GJJ10453) 华东交通大学科研基金资助项目(01305131)
关键词 严格π-正则半群 fuzzy同余 fuzzy群同余 strictly π-regular semigroup fuzzy congruence fuzzy group congruence
  • 相关文献

参考文献5

二级参考文献69

  • 1应明生.不分明拓扑中的一种覆盖式紧性[J].数学学报(中文版),1994,37(6):852-856. 被引量:5
  • 2Xie Xiangyun,Fuzzy Sets and Systems,1999年,102卷,353页
  • 3Wang X Ρ,Inform Sci,1993年,68卷,225页
  • 4Bire B,Colloq Math Soc Janos Bolyai,1982年,29卷,129页
  • 5Krasner, M.: A class of hyperring and hyperfields. Int. J. Math. Math. Sci., 2, 307-312 (1983).
  • 6Marty, F.: Sur une generalization de la notation de groupe, 8th Congress Math. Scandianaves, Stockholm, 45-49, 1934.
  • 7Corsini, P.: Prolegomena of hypergroup theory, Aviani, editor, 1993.
  • 8Davvaz, B.: A brief survey of the theory of H,-structures, Proc. 8th Int. Congress AHA, Greece Spanids Press, 39-70, 2003.
  • 9Vougiouklis, T.: Hyperstructures and their representations, Hadronic Press Inc., Palm Harber, USA, 1994.
  • 10Corsini, P., Leoreanu, V.: Applications of hyperstructure theory, Advances in Mathematics, Kluwer Academic Publishers, Dordrecht, 2003.

共引文献19

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部