期刊文献+

基于IMMCKF的机动目标跟踪算法 被引量:19

Maneuvering Target Tracking Based on IMMCKF Algorithm
在线阅读 下载PDF
导出
摘要 针对非线性机动目标跟踪中滤波器易发散、跟踪精度低等问题,将容积卡尔曼滤波器(CKF)引入到交互式多模型算法(IMM)中,设计了交互式多模型容积卡尔曼滤波算法(IMMCKF)。该算法采用Markov过程描述多个目标模型间的切换,利用CKF滤波器对每个模型进行滤波,将各滤波器状态输出的概率加权融合作为IMMCKF的输出。仿真结果表明,与IMMUKF算法相比,IMMCKF算法跟踪精度更高,模型切换速度更快,计算量更小,该算法具有重要的工程应用价值。 In nonlinear maneuvering target tracking,the tracking filters are liable to diverge and the tracking precision is low.To solve this problem,an Interacting Multiple Model Cubature Kalman Filter(IMMCKF) was designed by introducing CKF into IMM algorithm.This method used Markov process to describe switching probability among the models,and used CKF filter for filtering each model.The weighted sum of the outputs of all parallel CKF was taken as the output of IMMCKF.Simulation shows that IMMCKF has higher precision,quicker model switching speed,and smaller calculation cost compared with IMMUKF.The algorithm is of great engineering application value.
作者 陈海 单甘霖
机构地区 军械工程学院
出处 《电光与控制》 北大核心 2011年第10期1-5,共5页 Electronics Optics & Control
基金 武器装备军内科研项目
关键词 机动目标跟踪 交互式多模型 容积卡尔曼滤波 maneuvering target tracking Interacting Multiple Model(IMM) cubature Kalman Filter
  • 相关文献

参考文献10

二级参考文献46

  • 1宋建梅,郑建强.平方根滤波在捷联寻的制导系统中的应用研究[J].北京理工大学学报,2006,26(6):475-477. 被引量:3
  • 2蒋宏,宋龙,任章.非全测状态下的机动目标跟踪[J].系统工程与电子技术,2007,29(2):197-200. 被引量:7
  • 3Ristic H M, Arulampalam S. Tracking a maneuvering target using angle-only measurements: algorithms and perfor-mance [EB/OL].www. elsevier.com/locatelsigpro.
  • 4Minvielle P. Tracking a ballistic re-entry vehicle with a sequential Monte-Carlo filter[C]//Proc of Aerospace Conference Toulouse, France: IEEE Press, 2002 : 1773 - 1787.
  • 5Li X R,Jilkov V P. A survey of maneuvering target tracking. Part V: multiple-model methods[J].IEEE Trans. on Aerospace and Electronic Systems, 2005, 41 (4) : 1255 - 1321.
  • 6Julier S, Uhlmann J, Durrant-Whyte. A new method for the non linear transformation of means and covariances in filters and estimators[J]. IEEE Trans. on Automatic Control, AC- 45.3 (Mar. 2000).
  • 7Gordon N J, salmond D J, Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation [C]//Proc. of Inst. Elect. Eng. F, Vol. 140,no. 2.
  • 8BLOM H A P, BAR-SHALOM Y. The interacting multiple model algorithm for systems with Markovian switching coefficients [ J ]. IEEE Trans Automatic Control, 1988,33 (8) :780-783.
  • 9BAR-SHALOM Y,LI Xiaorong. Estimation and tracking principles,techniques, and software[ M ]. Artech House 1993.
  • 10GORDON N, SALMOND D J, SMITH A F M. Novel approach to nonlinear and non-Gaussian Bayesian state estimation [ J ]. IEE Proceedings-F, 1993,140 (2) : 107 - 113.

共引文献65

同被引文献197

引证文献19

二级引证文献120

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部