期刊文献+

Stability of piecewise-linear models of genetic regulatory networks

Stability of piecewise-linear models of genetic regulatory networks
在线阅读 下载PDF
导出
摘要 This paper investigates the stability of the equilibria of the piecewise-linear models of genetic regulatory networks on the intersection of the thresholds of all variables. It first studies circling trajectories and derives some stability conditions by quantitative analysis in the state transition graph. Then it proposes a common Lyapunov function for convergence analysis of the piecewise-linear models and gives a simple sign condition. All the obtained conditions are only related to the constant terms on the right-hand side of the differential equation after bringing the equilibrium to zero. This paper investigates the stability of the equilibria of the piecewise-linear models of genetic regulatory networks on the intersection of the thresholds of all variables. It first studies circling trajectories and derives some stability conditions by quantitative analysis in the state transition graph. Then it proposes a common Lyapunov function for convergence analysis of the piecewise-linear models and gives a simple sign condition. All the obtained conditions are only related to the constant terms on the right-hand side of the differential equation after bringing the equilibrium to zero.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第10期496-505,共10页 中国物理B(英文版)
基金 supported by the National Natural Science Foundation of China (Grant No. 60672029)
关键词 genetic regulatory networks piecewise-linear model Lyapunov function genetic regulatory networks, piecewise-linear model, Lyapunov function
  • 相关文献

参考文献27

  • 1Alur R, Belta C, Ivanicic F, Kumar V, Mintz F, Pappas G, Rubin H and Schug J 2001 Lecture Notes in Computer Science 2034 19.
  • 2Angeli D and Sontag E 2008 IEEE Trans. Autom. Control 53 166.
  • 3Azuma S, Yanagisawa E and Imura J 2008 IEEE Trans. Autom. Control 53 139.
  • 4Batt G, Ropers D, de Jong H, Geiselmann J, Mateescu R, Page M and Schneider D 2005 Bioinformatics 21 i19.
  • 5Casey R, de Jong H and Gouze J 2006 J. Math. Biol. 52 27.
  • 6Chaves M, Eissing T and Allowger F 2008 IEEE Trans. Autom. Control 53 87.
  • 7de Jong H 2002 J. Comput. Biol. 9 67.
  • 8de Jong H, Gouze J, Hernandez C E, Page M and Sari T 2004 Bull. Math. Biol. 66 301.
  • 9Drulhe S, Ferrari-Trecate G, de Jong H and Viari A 2006 Hybrid Systems: Computation and Control 3927 184.
  • 10Edwards R 2000 Physica D 146 165.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部