期刊文献+

基于时频分析和神经网络的水声通信信号识别技术 被引量:6

Identifications of Underwater Acoustic Communication Signals Classification Based on Time-frequency Analysis and Neural Network
原文传递
导出
摘要 水声通信信号识别具有重要的现实意义。传统的识别器是每种调制模式分别设计的检测器,因而运算量随调制模式数量的增加而增加。随着通信技术手段日益更新,调制模式不断翻新,传统识别器已经不能满足快速检测和识别信号的要求,设计统一的特征提取方法以减少检测器的数量非常迫切。从侦收信号的时频分布中提取特征向量,利用人工神经网络对特征向量进行分类,基于此提出了一种新的识别方法。对本文提出的识别器,在使用前增加新的调制模式的样本并重新训练神经网络,使用过程中能实现更多调制模式的识别而不增加运算量。对特征向量的提取方法进行了详细描述,并通过计算机仿真实验,得出了低信噪比时的正确识别概率。 The fast detection of communication signals and the exact identification of their modulation types are of importance in practice. Traditional designs use detectors for each modulation type separately thus the computation time would increase as the number of modulation types increases. It is necessary to work out a standard feature vector extraction method to reduce the number of detectors. A novel identification scheme is proposed, with feature vectors being extracted from the time-frequency distribution and identified by an artificial neural network. By adding signal samples of new modulation types and by retraining the neural network, this identification scheme can recognize more modulation types without increase of computation burden. The detail of this feature vector extraction approach is described, the probability of the correct identification of the communication signals in low signal-to-noise conditions is obtained through computer simulations.
机构地区 中国人民解放军
出处 《科技导报》 CAS CSCD 北大核心 2011年第28期33-36,共4页 Science & Technology Review
关键词 水声通信信号识别 时频分析 人工神经网络 underwater acoustic communication signal classification time-frequency analysis artificial neural network
  • 相关文献

参考文献6

二级参考文献14

  • 1张德丰,张葡青.维纳滤波图像恢复的理论分析与实现[J].中山大学学报(自然科学版),2006,45(6):44-47. 被引量:18
  • 2Sze C J, Liao M, Fan KC. A New Image Flux Conduction Model and Its Application to Selective Image Smoothing. IEEE Transactions on Image Processing, 2001,10(2):296 - 306.
  • 3Tuzikov AV, Sheynin SA. Symmetry Measure Computation for Convex Polyhedm. Joumal of Mathematical Imaging and Vision, 2002,16(1):41 - 56.
  • 4JainA.数字图像处理基础.北京:清华大学出版社,2006.228-233.
  • 5Duncan DYP, Do MN. Directional multiscale modeling of images using the contourlet transform. IEEE Trans. Images process, 2006,15(6): 1610 - 1620.
  • 6Wang LP, Rajapaksej C, dueetion using Wiener Fukushima K. Speckle refiltering in wavelet domain. Proc. of the 9th International ConVince on Neural Information Processing. Singapore: IEEE Computer Society, 2002,(2):792 - 795.
  • 7Wiener Norbert. Extrapolation, interpolation, and smoothing of stationary time series: with engineering applications. Cambridge: Technology Press of Mass. Institute of Technology, 1950. 4.
  • 8孙兆林.MATLAB6X图像处理.北京:清华大学出版社.2000.64-228.
  • 9[1]Polydoros A and Woo K T.LPI detection of frequency hopping signal using autocorrelation techniques.IEEE Selected Areas in Communications,Vol.SAC-3:714~726,Sept.1985
  • 10[2]Hinedi S and Polydoros A.DS/LPI autocorrelation detection in noise plus random-tone interference.IEEE Trans.on Communications,june 1990:805~817

共引文献27

同被引文献65

引证文献6

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部