期刊文献+

基于加权判别局部多线性嵌入的人脸识别 被引量:12

Weighted discriminative locally multi-linear embedding algorithm for face recognition
在线阅读 下载PDF
导出
摘要 张量算法克服了传统向量算法的维数灾难和小样本问题,在人脸识别中取得了较好的效果。尽管如此,现有张量算法容易导致邻近类别在低维空间中重叠,为此,提出了一种加权判别局部多线性嵌入算法。该算法设计了一种自适应加权的判别准则,结合类别信息,保持了同类人脸图像之间的局部流形结构,同时利用高斯基函数作为加权函数,根据人脸图像对其他类别的影响,自适应产生权重系数,加大了类间样本的区分度。此外,该算法采用张量形式表示图像数据,保留了图像的结构,继承了张量算法的优点,并且有效地解决了out-of-sample问题。人脸识别实验表明,对于光照,姿态和表情的变化,该算法具有较好的稳健性和较高的识别率。 In order to overcome the curse of dimensionality and small sample size problem,a large number of tensor algorithms are proposed and better performance is achieved in face recognition.However,the neighboring classes overlap easily in low dimensional space for existing tensor algorithms.Therefore,this paper proposes a weighted discriminative locally multi-linear embedding algorithm.Because the algorithm considers a face image as a high-order tensor,it contains the structure of the image,avoids the curse of dimensionality and relieves the sample size problem.Moreover the algorithm preserves the local manifold structure within the same class,and increases the separability between different classes using Gaussian Basis Function as the weighted function.The algorithm also solves the out-of-sample problem effectively.Face recognition experiments demonstrate that the algorithm proposed in this paper is robust for the variation of illumination,facial expression and poses,and achieves better performance compared with many popular face recognition algorithms.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2011年第10期2248-2255,共8页 Chinese Journal of Scientific Instrument
基金 四川省科技厅支持项目(2010JQ0032 2011JY0077)资助
关键词 流形学习 判别分析 张量表示 高斯基函数 人脸识别 manifold learning discriminative analysis tensor representation Gaussian basis function face recognition
  • 相关文献

参考文献38

  • 1TURK M, PENTLAND A. Eigenfaces for recognition [ J ]. Journal of Cognitive Neuroscience,1991,3 (1):71-86.
  • 2孙锐,高隽.组合NMF和PCA的图像哈希方法[J].电子测量与仪器学报,2009,23(5):52-57. 被引量:19
  • 3韦洁,张和生,贾利民.面向状态监测的改进主元分析方法[J].电子测量与仪器学报,2009,23(7):51-55. 被引量:12
  • 4LU J, PLATANIOTIS K, VENETSANOPOULOS A. Faee recognition using Ida-based algorithms [ J ]. IEEE Trans- actions on Neural Networks,2003,14 (1) :195-200.
  • 5TENENBAUM J, SILVA V, LANGFORD J. A global ge- ometric framework for nonlinear dimensionality reduction [J]. Science, 2000,290 (5500): 2319-2323.
  • 6SAUL L, ROWEIS S. Nonlinear dimensionality reduction by locally linear embedding [ J ] Science, 2000, 290 (5500) : 2323-2326.
  • 7SAUL L, ROWEIS S. Think globally, fit locally: unsu- pervised learning of low dimensional manifolds [ J ]. Jour- nal of Machine Learning Research, 2003, 4: 119-155.
  • 8BELKIN M,NIVOGI P. Laplacian eigenmaps and spec- tral techniques for embedding and clustering [ J ]. Ad- vances in Neural Information Processing Systems, 2002, 1 : 585-592.
  • 9PANG Y, TEOH A, WONG E, et al. Supervised locally linear embedding in face recognition [ C ]. Proceedings of International Symposium on Biometrics and Security Tech- nologies, 2008 : 1-6.
  • 10BAI X, YIN B, SHI Q, et al. Face recognition based on supervised locally linear embedding method [ J ]. Journal of Information & Computational Science, 2005,2(4) :641-646.

二级参考文献21

  • 1周大可,杨新,彭宁嵩.改进的线性判别分析算法及其在人脸识别中的应用[J].上海交通大学学报,2005,39(4):527-530. 被引量:12
  • 2王承,陈光,谢永乐.基于主元分析与神经网络的模拟电路故障诊断[J].电子测量与仪器学报,2005,19(5):14-17. 被引量:22
  • 3付华,尹丽娜.小波包分解在电机故障诊断中的应用[J].微电机,2007,40(5):86-89. 被引量:5
  • 4JIA L M, JIANG Q H. Study on essential characteristics of RITS[J]. IEEE ISADS'03, 2003: 216-221.
  • 5BLOD M, GRANJON P, RAISON B, ROSTAING G. Models for bearing damage detection in induction motors using stator current monitoring[J]. IEEE Transaction on Industrial Electronics, 2008, 55(4): 1813 - 1822.
  • 6BENEDUCE L, LOVIENO S, MASUCCI A,et al. Detection broken rotor bar in cage induction motor[J]. International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 2006, S9-1-S9-5.
  • 7NIU ZH, NIU Y G. The application of PCA-based fault detection in the power plant process[J]. Shanghai: ISSST'2004, 2004.
  • 8张杰,阳宪惠.多变量统计控制过程[M].北京:化学工业出版社,2000.
  • 9JACKSON J E, MUDHOLKAR G S. Control procedures for residuals associated with principal component analysis[J]. Technometrics, 21: 341-349, 1979.
  • 10TENENBAUM J B, DE SILVA V, LANGFORD J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290(5500):2319-2323.

共引文献49

同被引文献124

引证文献12

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部