期刊文献+

一种基于MST的自适应优化相异性度量的半监督聚类方法 被引量:1

A Semi-Supervised Clustering Method of Adaptively Optimizing the Dissimilarity Based on MST
在线阅读 下载PDF
导出
摘要 针对混合属性空间中具有同一(或相近)分布特性的带类别标记的小样本集和无类别标记的大样本数据集,提出了一种基于MST的自适应优化相异性度量的半监督聚类方法。该方法首先采用决策树方法来获取小样本集的"规则聚类区域",然后根据"同一聚类的数据点更为接近"的原则自适应优化建构在该混合属性空间中的相异性度量,最后将优化后的相异性度量应用于基于MST的聚类算法中,以获得更为有效的聚类结果。仿真实验结果表明,该方法对有些数据集是有改进效果的。为进一步推广并在实际中发掘出该方法的应用价值,本文在最后给出了一个较有价值的研究展望。 This paper presents an MST-based semi-supervised clustering method of adaptively optimizing dissimilarity, when clustering an unlabeled data set which has the same or a similar distribution with a labeled sample in one hybrid attributes space. First, we can obtain "regular cluster regions" by u- sing a decision-tree method, and then adaptively optimize the dissimilarity of the hybrid attributes space based on the principia, "data points in the same clusters should have more similarity than those in other clusters". Finally, the optimized dissimilarity is applied to an MST-based clustering method. From some simulated experiments of several UCI data set.~, we know that this kind of semi-supervised elustering method can often get better clustering quality. In the end, it gives a research expectation to disinter and popularize this method.
作者 陈新泉
出处 《计算机工程与科学》 CSCD 北大核心 2011年第10期154-158,共5页 Computer Engineering & Science
基金 江西省教育厅资助科研项目(GJJ10253)
关键词 相异性度量 半监督聚类 混合属性 dissimilarity semi supervised clustering hybrid attributes
  • 相关文献

参考文献6

  • 1Chen X Q. Weighted Clustering and Evolutionary Analysis of Hybrid Attributes Data Streams[J]. Journal of Computers, 2008, 3(12):60-67.
  • 2Chen X Q, Peng H, Hu J S. An Adaptive Optimization Method of Configuring Feature Weight Group[C]//Proc of the 5th ICMLC, 2006:1281-1286.
  • 3Frank A, Asuncion A. UCI Machine Learning Repository [EB/OL]. [2011-05-12]. http://archive, ics. uci. edu/ml.
  • 4Cormen T H, Leiserson C E, Rivest R L. Introduction to Algorithms[M]. Second Edition. The MIT Press , 2001.
  • 5李春堡,尹为民,李蓉蓉,等.数据结构教程[M].第3版.北京:清华大学出版社,2009.
  • 6Frey B J, Dueck D. Clustering by Passing Messages Between DataPoints[J]. Science, 2007, 315(16):972-976.

同被引文献16

  • 1崔光照,曹玲芝,张勋才,王延峰.基于密度的最小生成树聚类算法研究[J].计算机工程与应用,2006,42(5):156-158. 被引量:6
  • 2欧阳浩,肖建华.基于网格的最小生成树聚类算法[J].计算机与现代化,2006(12):81-82. 被引量:3
  • 3毛韶阳,李肯立,王志和.最小生成树聚类方法研究[J].怀化学院学报,2007,26(5):38-40. 被引量:2
  • 4Han J W, Kamber M.Data mining: concepts and techniques[M]. San Francisco : Morgan Kaufmann, 2000.
  • 5Gygorash O, Zhou Yah, Jorgensen Z.Minimum spanning tree based clustering algorithms[C]//18th IEEE International Conference on Tools with Artificial Intelligence, 2006: 73-81.
  • 6Zahn C T.Graph-theoretical methods for detecting and describing gestalt clusters[J].IEEE Transactions on Com- puters, 1971,20( 1 ) : 68-86.
  • 7Jain A, Murty M, Flynn P.Data clustering: A review[J]. ACM Computing Surveys, 1999,31 (3) : 264-323.
  • 8Graham R L, Hell Pavol.On the History of the Minimum Spanning Tree Problem[J].Annals of the History of Computing, 1985,7( 1 ) :43-57.
  • 9Macqueen J.Some methods for classification and analysis of multivariate observations[C]//Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, 1967 : 281-297.
  • 10Ester M, Kriegel H P, Sander J, et al.A density-based algorithm for discovering clusters in large spatial data- bases with noise[C]//Proceeding the 2nd International Conference on Knowledge Discovery and Data Mining (KDD). Portland, 1996 : 226-231.

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部