期刊文献+

基于保局判别投影的声目标特征提取算法

A feature extraction algorithm of acoustic target based on locality preserving discriminant projections
在线阅读 下载PDF
导出
摘要 针对现有声目标识别技术鲁棒性较差的实际情况,提出了一种监督性流形学习算法—保局判别投影(LPDP)算法。算法在流形学习保局投影(LPP)算法的基础上,引入了控制类间和类内距离的改进最大边缘标准(MMMC),使得这种特征提取算法既具有线性流形学习算法样本外点学习的优点,又能够有效解决小样本问题,并能在后续的分类中取得良好效果。通过在公开数据库和战场实际数据的特征提取实验,结果表明算法的识别率和稳定性均优于现有其他算法。 This paper presents a new supervised manifold learning algorithm called locality preserving discriminant projections to solve the problem of poor robustness in acoustic target recognition.This algorithm is based on locality preserving projections(LPP),and the method called modified maximum margin criterion(MMMC) which is adopted to automatically explore the optimal linear transformation for translation and resealing.So the proposed algorithm not only can solve the small sample size problem but also has the ability of out-of-sample learning and can achieve good results in classification.The proposed algorithm is tested on public databases and actual battlefield data.Experimental results show that the proposed algorithm is more precise and stable than the other methods.
出处 《电路与系统学报》 CSCD 北大核心 2011年第5期100-106,共7页 Journal of Circuits and Systems
基金 国家自然科学基金(60872113)
关键词 声目标识别 保局投影 改进最大边缘标准 acoustic target recognition locality preserving projections modified maximum margin criterion
  • 相关文献

参考文献11

  • 1刘辉,杨俊安,许学忠.基于MFCC参数和HMM的低空目标声识别方法研究[J].弹箭与制导学报,2007,27(5):217-219. 被引量:20
  • 2陈虎虎,钟方平,许学忠,董明荣.基于支持向量机的低空飞行目标声识别[J].系统工程与电子技术,2005,27(1):46-48. 被引量:11
  • 3Roweis S T, Saul L K Nonlinear Dimensionality Reduction by Locally Linear Embedding [J]. Science, 2000, 290(22): 2323-2326.
  • 4Tenenbaum J, De Silva V, Langford J. A Global Geometric Framework For Nonlinear Dimensionality Reduction [J]. Science, 2000, 290(22): 2319-2323.
  • 5管鲁阳,鲍明,张鹏,李晓东.基于流形学习的单类分类算法及其在不均衡声目标识别中的应用[J].声学学报,2009,34(1):67-73. 被引量:7
  • 6Li Bo, Zheng Chunhou, Huang Deshuang. Locally linear discriminant embedding:An efficient method for face recognition [J]. Pattern Recognition, 2008, 41(12): 3813-3821.
  • 7He Xiaofei, Yan Shuicheng, Hu Yuxiao, Niyogi Partha, Zhang Hongjiang. Face Recognition Using Laplacianfaces [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340.
  • 8何力,张军平,周志华.基于放大因子和延伸方向研究流形学习算法[J].计算机学报,2005,28(12):2000-2009. 被引量:24
  • 9Li Haifeng, Tao Jiang, Zhang Keshu. Efficient and Robust Feature Extraction by Maximum Margin Criterion [J]. IEEE Transactions on Neural Networks, 2006, (17): 157-165.
  • 10Liu Jun, Chen Songcan, Tan Xiaoyang, Zhang Daoqiang. Efficient and Robust Feature Extraction by Maximum Margin Criterion [J]. IEEE Transactions on Neural Networks, 2007, (18): 1862-1864.

二级参考文献47

共引文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部