期刊文献+

基于压缩感知信号重建的自适应正交多匹配追踪算法 被引量:16

Adaptive orthogonal multi matching pursuit algorithm for signal reconstruction based on compressive sensing
在线阅读 下载PDF
导出
摘要 近年来出现的压缩感知理论为信号处理的发展开辟了一条新的道路,不同于传统的奈奎斯特采样定理,它指出只要信号具有稀疏性或可压缩性,就可以通过少量随机采样点来恢复原始信号。在研究和总结传统匹配算法的基础上,提出了一种新的自适应正交多匹配追踪算法(adaptive orthogonal multi matching pursuit,AOM-MP)用于稀疏信号的重建。该算法在选择原子匹配迭代时分两个阶段,引入自适应和多匹配的原则,加快了原子的匹配速度,提高了匹配的准确性,实现了原始信号的精确重建。最后与传统OMP算法进行了仿真对比,实验结果表明该算法在重建质量和算法速度上均优于传统OMP算法。 The newly emerging compressive sensing theory in recent years has opened up a new path for the development of signal processing,which describes that it can reconstruct the original signal from a small amount of random sampling as long as the signal is sparse or compressible,which disobeys with the traditional Nyquist sampling theorem.Based on the study and summarize of the traditional matching algorithm,this paper presented a new adaptive orthogonal matching pursuit algorithm(AOMMP) for the reconstruction of the sparse signal.The algorithm divided each iteration into two stages for the choice of matching atoms,which accelerated the matching speed of the atom and improved the accuracy of the matching,ultimately led to exact reconstruction of the original signal.Finally,compared the AOMMP algorithm with the traditional OMP algorithm under the software simulation.Experimental results show that the AOMMP reconstruction algorithm is superior to traditional OMP algorithm on the reconstruction quality and the speed of the algorithm.
出处 《计算机应用研究》 CSCD 北大核心 2011年第11期4060-4063,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(60872158)
关键词 信号处理 压缩感知 稀疏表示 匹配追踪 重建算法 signal processing compressive sensing sparse representation matching pursuit reconstruction algorithm
  • 相关文献

参考文献16

  • 1DONOHO D L. Compressed sensing[ J]. IEEE Trans on Information Theory, 2006,52(4) : 1289-1306.
  • 2CANDES E, ROMBERG J, TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [ J]. IEEE Trans on Information Theory, 2006,52 ( 2 ) :489- 509.
  • 3CANDESE J. Compressive sampling[ C ]//Proc of International Congress of Mathematics. 2006 : 1433-1452.
  • 4CANDIES E, WAKIN M. An introduction to compressive sampling [J]. IEEE Signal Processing Magazine,2008,25(2) :21-30.
  • 5BARANIUK R. A lecture on compressive sensing[ J]. IEEE Signal Processing Magazine,2007,24(4) :118-121.
  • 6MALLAT S, ZHANG Zhi-feng. Matching pursuits with time-frequency dictionaries [ J ]. IEEE Trans on Signal Processing, 1993,41 (12) :3397-3415.
  • 7TROPP J. Greed is good: algorithmic results for sparse approximation [ J ]. IEEE Trans on Information Theory, 2004,50 (10) : 2231- 2242.
  • 8NEEDELL D, VERSHYNIN R. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit[ J]. Foundation of Computational Mathematics,2009,9 ( 3 ) :317- 334.
  • 9BLUMENSATH T, DAVIES M E. Gradient pursuits [ J ]. IEEE Trans on Signal Processing,2008,56(6) :2370-2382.
  • 10NEEDELL D, TROPP J. CoSaMP: iterative signal recovery from incomplete and inaccurate samples [ J ]. Applied and Computational Harmonic Analysis, 2009,26 ( 3 ) : 301 - 321.

二级参考文献82

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献714

同被引文献132

引证文献16

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部