期刊文献+

基于PROBA/CHRIS遥感数据和PROSAIL模型的春小麦LAI反演 被引量:33

LAI inversion of spring wheat based on PROBA/CHRIS hyperspectral multi-angular data and PROSAIL model
在线阅读 下载PDF
导出
摘要 大面积区域作物叶面积指数(LAI)遥感反演,对指导作物管理具有重要的意义。该文基于2008年5-7月在黑河流域开展的大型星-机-地遥感综合试验获取的多角度高光谱PROBA/CHRIS数据及地面同步观测数据,利用PROSAIL辐射传输模型和神经元网络方法反演春小麦LAI,并利用地面实测LAI进行验证和分析,结果表明:PROBA/CHRIS数据的最佳组合波段为band4(555.1nm)、band9(696.9nm)和band15(871.5nm),利用PROBA/CHRIS数据反演LAI时,3角度组合(0°、36°、55°)反演LAI精度最高(R2=0.854,RMSE=0.344;MAE=0.213)。随着观测角度增加LAI反演精度相应提高,但超过3个角度后,多观测角度数据会带来较大不确定性,影响神经元网络建模,导致LAI反演精度下降。 Leaf area index(LAI) is an important parameter of vegetation ecosystems,which can represent the growth situation of vegetation.The PROBA(project for onboard autonomy)/CHRIS(compact high resolution imaging spectrometer)data acquired in June 4,2008 was used to inverse LAI of spring wheat combing with the radiative transfer model(PROSAIL) and ANN(artificial neural network),and to validate the results according to the in-situ measurements.The optimal bands were selected using segmented principal component analysis.Three bands(center wavelength 551.1 nm、696.9 nm and 871.5 nm,respectively) were finally used to inversion of LAI.The selected combination of three observation angles(0°,36° and 55°) shows high accuracy inversion LAI with R2=0.854,RMSE=0.344,MAE=0.213.The accuracy of inversion LAI can be improved with increasing the number of observation angle.However,if the number of angles is more than three,the accuracy will conversely decrease because of the uncertainty augment of multi-angle data.
出处 《农业工程学报》 EI CAS CSCD 北大核心 2011年第10期88-94,共7页 Transactions of the Chinese Society of Agricultural Engineering
基金 国家重点基础研究发展计划("973"计划)项目(2011CB311806 2007CB714401) 北京市自然科学基金(4102021) 国家自然科学基金(40901173 41071228) 北京市农林科学院科技创新能力建设专项(KJCX201104012) 中国科学院遥感应用研究所遥感科学国家重点实验室开放基金(OFSLRSS201109)
关键词 遥感 神经元网络 反演 春小麦 LAI PROBA/CHRIS PROSAIL remote sensing artificial neural network inversion spring wheat LAI PROBA/CHRIS PROSAIL
  • 相关文献

参考文献20

  • 1Sellers P J, Miutz Y, Sud Y C, et al. A simple biosphere model (SiB) for use within general circulation models[J]. J. Atmos. Sci. 1986, 43(6): 505-531.
  • 2Bonan G B. Importance of leaf area index and forest type when estimating photosynthesis in boreal forests. Remote Sens[J]. Environ. 1993, 43(3): 303-314.
  • 3Chase T N, Pielke R A, Kittel T G, et al. Sensitivity of a general circulation model to global changes in leaf area index[J]. Journal of Geophysical Research, 1996, 101(D3): 7393 -7408.
  • 4杨飞,孙九林,张柏,姚作芳,王宗明,王卷乐,乐夏芳.基于PROSAIL模型及TM与实测数据的MODISLAI精度评价[J].农业工程学报,2010,26(4):192-197. 被引量:35
  • 5何英彬,陈佑启,唐华俊.基于MODIS反演逐日LAI及SIMRIW模型的冷害对水稻单产的影响研究[J].农业工程学报,2007,23(11):188-194. 被引量:14
  • 6Weiss M, Baret F. Evaluation of canopy biophysical variable retrieval erformances from the accumulation of large swath satellite data[J]. Remote Sens. Environ, 1999, 70(3): 293-306.
  • 7Liang S L, Fang H, Thorp L, et al. Estimation and validation of land surface broadband albedos and leaf area index from EO-1 ALl data[J]. IEEE Transactions on Geosciences and Remote Sensing 2003, 41(6): 1260-1267.
  • 8Schlerf M, Atzberger C. Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data[J]. Remote Sens. Environ. 2006, 100(3): 281 -294.
  • 9Gemmell F, Varjo J. Utility of reflectance model inversion versus two spectral indices for estimating biophysical characteristics in a boreal forest test site[J]. Remote Sens. Environ. 1999, 68(2): 95- 111.
  • 10Li X W, Strahler A H. Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: effect of crown shape and mutual shadowing[J]. IEEE Transactions on Geoscience and Remote Sensing 1992, 30(2): 276-292.

二级参考文献42

共引文献46

同被引文献456

引证文献33

二级引证文献151

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部