期刊文献+

新课程背景下中澳两国数学教师教学能力的比较研究——以加强数与代数学习之间的衔接为例 被引量:4

Curriculum Reform in Mathematics:How Well Do Teachers Connect Arithmetic Learning and Algebraic Thinking
在线阅读 下载PDF
导出
摘要 中国与澳大利亚最新的国家数学课程标准都特别强调数与代数学习衔接的重要性。运用问卷,从以下四个方面分析、比较中澳两国数学教师在这一。问题上的辛学能力:相关数学知识,对数学课程标准理念的解读,对学生数学思考的理解,寅期与长期的教学计划。结果表明,中澳数学教师在总体能力上水平相近,中国教少对于数学知识的理解更为清晰,而澳大利亚教师则在对学生数学思考的理解上表劫得更好。与此同时,在推行国家数学课程标准时。 Closer connection between the learning of number and algebra has been Valued in new nationalmathematics curriculum in both China and Australia. This exploratory study seeks to characterise teachers' capacity to help students corm ect arithmetic learning and emerging algebraic thinking. The study is based on questionnaire given to Australian and Chinese teachers, comprising seven students' Solutions of subtraction sentences. Teachers' responses to the questionnaire were analysed in terms of four categories, knowledge of mathematics, interpretation of the intentions of the official curriculum documents, understanding of students' thinking, and capacity to design appropriate instruction in the short and long term. These four categories form the basis of our construct of teacher capacity. We argue finally that teacher capacity should be regarded as a key element in the developnvent and implementation of National Curriculum in Mathematics in both countries.
出处 《课程.教材.教法》 CSSCI 北大核心 2011年第11期59-65,共7页 Curriculum,Teaching Material and Method
基金 全国教育科学“十一五”规划教育部重点课题“和谐学校文化建设和课程教学的关系研究”(DHA090189) 澳大利亚墨尔本大学与维多利亚州儿童发展与教育部联合项目Teacher capacity as a key element of national curriculum reform inmathematics:A comparative study between Australia and China(2011_000988) 西南大学2009年度中央高校基本科研业务费专项资金项目——基于数学教师PCK的中澳基础教育数学课程改革比较研究(SWU0909686)
关键词 国家课程 中澳比较 数学教师 教学能力 数与代数 national curriculum comparison between China and Australia teachers in mathematics teac capacity number and algebra
  • 相关文献

参考文献12

  • 1Stacey, Kaye, Chick, Helen, & Kendal, Margaret. (Eds.) The Future of the Teaching and Learning of Algebra [M] Boston: Kluwer Academic Publisher, 2004.
  • 2徐文彬.试论算术中的代数思维:准变量表达式[J].学科教育,2003(11):6-10. 被引量:21
  • 3Australian Curriculum, Assessment and Reporting Authority. National Mathematics Curriculum [EB/OL]. http:// www. australiancurriculum, edu. au/Mathematics/ Curriculum/F-10.
  • 4Department of Education and Early Childhood Development. Victorian Essential Learning Standards EB/OL 3. http. //vels. vcaa. vic. edtL au/downloads/ vels_ standards/.
  • 5Depm-mnent of FAucation and Early Childhood Development, Mathematics Developmental Continuum [EB/OL]. http. //www. education, vic. gov. au/studentleaming/teachingresources/maths)mathseontinuum/ default, htm.
  • 6Datnow A, Castellano M. Teachers'Responses to Success for All: How Beliefs, Experiences and Adaptations Shape Currfculum [ J ]. AmericanEducational Research Journal, 2000 (37) : 775 -800.
  • 7Irwin K, Britt M. The Algebraic Nature of Students' Numerical Manipulation in the New Zealand Numera y Project [J]. Educational Studies in Mathematics, 2000 (58): 169-188.
  • 8Jacobs V R, Franke M L, Carpenter T P, Levi L, Battey D. Developing Children ' s Algebraic Reasoning [J]. Journal for Research in Mathematics Education, 2007 (38): 3, 258--288.
  • 9Max Stephens,王旭.关系性思维中的一些重要关联——对中国和澳大利亚6~7年级学生进行的调查研究[J].数学教育学报,2008,17(5):36-40. 被引量:2
  • 10Shulman L S. Those Who Understand.. Knowledge Growth in Teaching [J]. Educational Researcher, 1986, 15 (2): 4--14.

二级参考文献12

  • 1Irwin K, Britt M. The Algebraic Nature of Students' Numerical Manipulation in the New Zealand Numeracy Project [J]. Educational Studies in Mathematics, 2005, (58): 169-188.
  • 2Stephens M. Describing and Exploring the Power of Relational Thinking [A]. In: Grootenboer P, Zevenbergen R, Chinnappan M. Identifies, Cultures and Learning Spaces, Proceeding of the 29th Annual Conference of the Mathematics Education Research Group of Australasia[C]. Canberra: MERGA, 2006.
  • 3Carpenter T P, Franke M L. Developing Algebraic Reasoning in the Elementary School: Generalization and Proof [A]. In: Chick H, Stacey K, Vincent J, et al. Proceedings of the 12th ICMI Study Conference. The Future of the Teaching and Learning of Algebra [C]. Melbourne: University of Melbourne, 2001.
  • 4Kieran C. Concepts Associated with the Equality Symbol [J]. Educational Studies in Mathematics, 1981, (12): 317-326.
  • 5Stephens M. Students' Emerging Algebraie Thinking in the Middle School Years [A]. In: Watson J, Beswick K. Mathematics: Essential Research, Essential Practice, Proceedings of the 30th Annual Conference of the Mathematics Education Research Group of Australasia [C]. Hobart: MERGA, 2007.
  • 6Stephens M, Isoda M, Inprashita. Exploring the Power of Relational Thinking: Students' Emerging Algebraic Thinking in the Elementary and Middle School [A]. In: Lim C S, Fatimah S, Munirah G, et al. Meeting Challenges of Developing Quality Mathematics Education, Proceedings of the Fourth East Asia Regional Conference on Mathematics Education (EARCOME4) [C]. Penang: Malaysia, 2007.
  • 7Lee L. Early Algebra But Which Algebra? [A]. In: Chick H, Stacey K, Vincent J, et al. Proceedings of the 12th ICMI Study Conference. The Future of the Teaching and Learning of Algebra [C]. Melbourne: University of Melbourne, 2001.
  • 8Zazkis I, Liljedhal E Generalisation of Patterns: The Tension between Algebraic Thinking and Algebraic Notation [J]. Educational Studies in Mathematics, 2002, (49): 379--402.
  • 9Fujii T. Probing Students' Understanding of Variables Through Cognitive Conflict Problems: Is the Concept of a Variable so Difficult for Students to Understand? [A]. In: Pateman N A, Dougherty B J, Zilliox J. Proceedings of the Joint Meeting of PME and PMENA [C]. University of Hawai'i: PME, 2003.
  • 10Jacobs V R, Franke M L, Carpenter T P, et al. Developing Children's Algebraic Reasoning [J]. Journal for Research in Mathematics Education, 2007, 38(3): 258-288.

共引文献20

同被引文献124

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部