期刊文献+

基于多层螺旋CT血管分析的感兴趣冠脉段最佳造影角度计算 被引量:3

Calculation of Optimal Angiographic Angle for Segment of Interest Based on Multislice Computed Tomography Vessel Analysis
原文传递
导出
摘要 多层螺旋计算机层析(MSCT)相对于传统的冠状动脉造影(CAG)具有无创、三维成像的特点。提出了一种基于MSCT血管分析的CAG感兴趣血管段的最佳造影角度计算方法。首先,应用最佳方向性梯度通量局部血管增强和自适应性区域生长将冠脉血管分割出来,构造三维血管树,并进行细化及B样条拟合,对感兴趣血管段在计算机中根据CT数据采集及冠脉造影时的系统参数,模拟造影过程,应用最小投影缩短和最小遮盖原则,计算最佳造影角度。实验结果表明,计算出的最佳角度下,血管的缩短比小于1%,优于实际工作角度。研究结果可用于冠心病的介入手术规划。 Multislice computed tomography (MSCT) is noninvasive and 3D imaging compared with the traditional coronary angiography (CAG). An optimal CAG viewing angle algorithm based on MSCT vessel analysis is proposed. First, a local vessel enhancement based on optimal oriented flux and locally adaptive threshold region growing is applied to extract the 3D coronary arteries model and then 3D thinning is performed and segment of interest is selected. According to the parameters during CT and CAG data acquisition, a perspective projection is performed to simulate the CAG procedure and the optimal viewing angle is calculated with the minimum foreshortening and minimum overlapping principle. Experimental results illustrate that the foreshortening percent is less than 1% in the obtained angle, which is close but superior to the working view angle. Therefore it can be applied to coronary artery disease intervention planning.
出处 《中国激光》 EI CAS CSCD 北大核心 2011年第11期136-140,共5页 Chinese Journal of Lasers
关键词 图像处理 冠状动脉造影 最佳角度 多层螺旋计算机层析 三维血管分割 image processing coronary angiography optimal viewing angle multislice computed tomography three dimensional vessel segmentation
  • 相关文献

参考文献16

二级参考文献69

共引文献25

同被引文献37

  • 1王皓,孙宏斌,张伯明.PG-HMI:一种基于互信息的特征选择方法[J].模式识别与人工智能,2007,20(1):55-63. 被引量:6
  • 2Akinyemi A, Murphy S, Poole I, et al.. Automatic labeling of coronary arteries[C]. 17th European Signal Processing Conference, 2009: 1562-1566.
  • 3Yang G, Broersen A, Petr R, et al.. Automatic coronary artery tree labeling in coronary computed tomographic angiography datasets[C]. IEEE Computing in Cardiology, 2011: 109-112.
  • 4Metz C T, Schaap M, Weustink A C, et al.. Coronary centerline extraction from CT coronary angiography images using a minimum cost path approach[J]. Medical Physics, 2009, 36(12): 5568-5579.
  • 5Cetin S, Demir A, Yezzi A, et al.. Vessel tractography using an intensity based tensor model with branch detection[J]. IEEE Transactions on Medical Imaging, 2013, 32(2): 348-363.
  • 6Schaap M, Neefjes L, Metz C, et al.. Coronary lumen segmentation using graph cuts and robust kernel regression[J]. Information Processing in Medical Imaging, 2009, 21: 528-539.
  • 7Dural M, Ouzeau E, Precioso F, et al.. Coronary artery stenoses detection with random forest[C]. Proceedings of MICCAI Workshop 3D Cardiovascular Imaging: A MICCAI Segmentation Challenge, 2012.
  • 8Eslami A, Aboee A, Hodaei Z, et al.. Quantification of coronary arterial stenosis by inflating tubes in CT angiographic images[C]. Proceedings of MICCAI Workshop 3D Cardiovascular Imaging: A MICCAI Segmentation, 2012.
  • 9Kirili H A, Schaap M, Metz C T, et al.. Standardized evaluation framework for evaluating coronary artery stenosis detection, stenosis quantification and lumen segmentation algorithms in computed tomography angiography[J]. Medical Image Analysis, 2013, 17(8): 859-876.
  • 10Broersen A, Kitslaar P, Frenay M, et al.. FrenchCoast: Fast, robust extraction for the nice challenge on coronary artery segmentation of the tree[C]. Proceedings of MICCAI Workshop 3D Cardiovascular Imaging: A MICCAI Segmentation Challenge, 2012.

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部