期刊文献+

酸性条件下大豆分离蛋白的亚基解离 被引量:6

Subunit Dissociation of Soybean Protein Isolates in Acid Conditions
在线阅读 下载PDF
导出
摘要 研究了不同pH值下大豆分离蛋白的Zeta电位、超速离心电泳、溶解性、荧光光谱及二级结构的变化及其规律,并进一步探讨了酸性条件下大豆分离蛋白亚基解离的机理.结果表明:酸性条件下大豆分离蛋白的亚基解离主要是由分子间静电斥力导致的,而且大豆球蛋白的解离程度远大于β-大豆伴球蛋白;溶液pH值在2.0~3.0之间时,Zeta电位达到最大值;大豆分离蛋白在pH值为2.0,3.0时发生解离,在pH值为3.0时解离程度达到最大,且与中性条件下的情况相比,其平均粒径提高了1.1倍,二级结构中无规则卷曲含量提高了15.7%,荧光光谱最大吸收波长增大了4.3 nm,pH值的进一步降低会导致解离程度的下降;而在pH值为1.0,7.0时大豆分离蛋白未发生解离;未解离的大豆分离蛋白的溶解性随离心转速的提高大幅下降. This paper deals with the effect of the pH value on the Zeta potentials, ultracentrifugation combined with electrophoresis, solubilities, fluorescence spectra and secondary structures of soybean protein isolates, with the mechanism of the subunit dissociation of the soybean protein isolates in acid conditions being also analyzed. The results show that the subunit dissociation is mainly due to the intermolecular electrostatic repulsion, and the extent of the dissociation of glycinin is much greater than that of β-eonglycinin, that the Zeta potential reaches the maximum at a pH value between 2.0 and 3.0, and that the subunits dissociate when the pH value is 2.0 and 3.0. Moreover, it is found that, at pH 3.0, the extent of the dissociation reaches the maximum, the average diameter of the soybean protein isolates is 2. 1 times that at pH 7.0, the random coil content of the secondary structure increases by 15.7% , and the maximum absorption wavelength in the fluorescence spectra increases by 4.3 nm, and that, the extent of the dissociation decreases when the pH value is lower than 3.0, the subunits do not dissociate when the pH value is 1.0 and 7.0, and the solubility of the undissociated protein decreases dramatically with the increase of the rotating speed of the ultracentrifugation.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第9期22-27,40,共7页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(20806030) 广东省高等学校高层次人才项目(粤教师函(2010)79号)
关键词 大豆分离蛋白 酸性条件 亚基解离 soybean protein isolate acid condition subunit dissociation
  • 相关文献

参考文献20

  • 1Liu C, Wang X S, Ma H, et al. Functional properties of protein isolates from soybeans stored under various condi- tions [ J ]. Food Chemistry,2008,111 ( 1 ) :29-37.
  • 2Remkema J M S, Knabben J H M, Vliet T V. Gel forma- tion by β-conglycinin and glycinin and their mixtures [ J]. Food Hydrocolloids,2001,15 (4/5/6) :407-415.
  • 3Roesch R R, Corredig M. Characterization of oil-in-water emulsions prepared with commercial soy protein concen- trate [ J ]. Journal of Food Science, 2002,67 ( 8 ) : 2837- 2842.
  • 4Arogundade L A, Tshay M, Shumey D, et al. Effect of io- nic strength and/or pH on extractability and physico-func-tional characterization of broad bean ( Vicia faba L. ) pro- tein concentrate [ J ]. Food Hydrocolloids, 2006,20 ( 8 ) : 1124-1134.
  • 5Wolf W J, Rackis J J, Smith A K, et al. Behavior of the 11 S protein of soybeans in acid solutions I. Effects of pH,ionic strength and time on uhracentrifugal and optical ro- tatory properties [ J ]. Journal of the American Chemistry Society, 1958,80 (21) :5730-5735.
  • 6Utsumi S, Nakamura T, Harada K, et al. Occurrence of dissociable and undissociable soybean glycinin [ J ]. Agri- culture and Biological Chemistry, 1987,51 ( 8 ) : 2139- 2144.
  • 7Badley R A, Atkinson D, Hauser H, et al. The structure, physical and chemical properties of the soy bean protein glycinin [ J ]. Biochim Biophys Acta, 1975,412 (2) :214- 228.
  • 8Lakemond C M M,de Jongh H H J,Hessing M,et al. Soy Glycinin:influence of pH and ionic strength on solubilityand molecular structure at ambient temperatures [ J ]. Journal of Agriculture and Food Chemistry, 2000,48 (6) : 1985-1990.
  • 9Luo D H, Zhao Q Z, Zhao M M, et al. Effects of limitedproteolysis and high-pressure homogenisation on structural and functional characteristics of glycinin [ J ]. Food Chemistry,2010,122( 1 ) :25-30.
  • 10Surh J, Decker E A, McClements D J. Influence of pH and pectin type on properties and stability of sodium-ca- seinate stabilized oil-in-water emulsions [ J ]. Food Hydroeolloids, 2006,20 ( 5 ) : 607- 618.

二级参考文献16

  • 1Wu S,Murphy P A,Johnson L A,et al.Pilot-plant fractio-nation of soybean glycinin and β-conglycinin[J].Journal of American Oil Chemists Society,1999,76:285-293.
  • 2Rickert D A,Johnson L A,Murphy P A.Functional pro-perties of improved glycinin and beta-conglycinin fractions[J].Journal of Food Science,2004,69:303-311.
  • 3Nicolas A D,Patricia A M,Lawrence A J.Characterization of fractionated soy proteins produced by a new simplified procedure[J].Journal of American Oil Chemists Society,2007,84:137-149.
  • 4Kazunobu T,Tsutomu S,Keisuke T,et al.Functional properties of soy protein hydrolysates obtained by selective proteolysis[J].LWT,2005,38:255-261.
  • 5Mahmoud M I.Physicochemical and functional properties of protein hydrolysates in nutritional products[J].Food Technology,1994,48(10):89-95.
  • 6Dinakar P,Arun K.Enhancing the functionality of food proteins by enzymatic Modification[J].Trends in Food Science & Technology,1996,4(7):120-125.
  • 7Laemmli U K.Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J].Nature,1970,227:680-685.
  • 8Adler-Nissen J.Enzymatic hydrolysis of food proteins[M].London:Elsevier Applied Science Publishers,1986:116-124.
  • 9Lowry O H,Rosebrough N J,Farr A L,et al.Protein measurement with the Folin-phenol reagent[J].Journal of Biological Chemistry,1951,193:265-268.
  • 10Thanh V H,Shibasaki K.β-Conglycinin from soybean proteins:isolation and immunological and physicochemical properties of the monomeric forms[J].Biochim.Bi-ophys.Acta,1977,490:370-384.

共引文献4

同被引文献55

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部