摘要
矩阵的半张量积是一种新的矩阵乘法.它将普通矩阵乘法推广到前阵列数与后阵行数不等的情况.推广后的乘法不仅保持了原矩阵乘法的主要性质,而且,具有伪交换性等比推广前更好的性质.因此,这是一个便捷而有力的新的数学工具.在简单介绍它的历史、定义和主要性质之后,本文对半张量积的本质及其优越性进行了分析,从而揭示它的合理性及有效性.接着,着重介绍它在若干领域的应用.包括(1)非线性(控制)系统的半张量积方法;(2)布尔网络的结构分析与控制;(3)半张量积在数学、物理中的其他应用.最后,本文对目前在研及可能突破的问题作了一个较详细的介绍,并对其潜在应用前景作了展望.
Semi-tensor product of matrices is a new matrix product. It generalizes the conventional matrix product to the case when the column number of the leading factor matrix does not equal to the row number of the following factor matrix. The generalized product keeps all major properties of the conventional matrix product unchanged. After introducing its history, definitions and main properties, this survey is emphasized on its applications to the analysis and control of dynamic systems, which mainly contain the followings: (1) semi-tensor product approach to nonlinear dynamic systems; (2) structure analysis and control of Boolean networks; (3) some other applications. Finally, a prediction for the potential applications of semi-tensor product is provided.
出处
《科学通报》
EI
CAS
CSCD
北大核心
2011年第32期2664-2674,共11页
Chinese Science Bulletin
关键词
半张量积
动态系统
布尔网络
李代数
生物系统
泛代数
semi-tensor product
dynamic system
Boolean network
Lie algebra
biological system
universal algebra