期刊文献+

粗糙集—小波神经网络在隧道围岩分类中的应用 被引量:4

Application of Rough Set-Wavelet Neural Network to Tunnel Surrounding Rock Classification
在线阅读 下载PDF
导出
摘要 隧道工程围岩的级别是隧道围岩稳定性的尺度,施工期间的隧道围岩分类的确定是最为基础、也是最为重要的内容。本文将粗糙集、小波神经网络和围岩分类有机结合起来,对白鹤隧道围岩分类进行识别研究。结果表明:用经过粗糙集约简后的样本集作为神经网络的训练样本集,有效地简化了神经网络的结构,减少了训练步数与训练时间,并提高了网络的学习速度和判断准确率;经过粗糙集约简后的WNN判别准确率最高,识别结果更接近专家质量评价法;而BP网络判别结果与专家质量评价法相差较大;总体上,小波神经网络预判的结果要比BP神经网络预判的结果精度要高,约简后要比约简前的精度要高。 The surrounding rock grade of a tunnel is the scale of tunnel stability.The determination of rock classification is the basic and most important content in the period of tunnel excavation.In this paper,the rough set,wavelet neural networks and rock classification were combined and applied to Baihe tunnel rock classification.The training sample set of neural network is reduced by rough set,the neural network structure is effectively simplified,the training steps and the training time are decreased,and the network learning speed and accuracy is improved.The judgement accuracy by using rough set WNN is the highest,and the recognition results are the nearest to the results by expert discriminant system.The results using BP neural network has the largest difference with the expert discriminant system value.In general,the prediction accuracy using the wavelet neural networks is higher than the prediction accuracy using BP neural network,and the prediction accuracy using rough set is higher than that without rough set.
出处 《地下空间与工程学报》 CSCD 北大核心 2011年第3期429-434,456,共6页 Chinese Journal of Underground Space and Engineering
基金 国家自然科学基金项目(40872170)
关键词 粗糙集 小波神经网络 隧道围岩分类 预测 稳定性 rough set wavelet neural network tunnel surrounding rock classification prediction stability
  • 相关文献

参考文献10

  • 1Deere, D. U. Technical description of rock cores for engineering purposes [ J ]. Felsmechanik und Ingenieu- geologie, 1963, 1 ( 1 ) : 16-22.
  • 2Barton N. , Lien R. & Lunde J. Engineering classifica- tion of rock masses for design of the tunnel support[ J]. Rock Mechanics, 1974, 6(4) : 189-236.
  • 3Arild Palmstrom. Characterizing rock masses by the RMi for use in practical rock engineering. Part 1 : The development of the Rock Mass index (RMi). Tunneling and Underground Space Technology, 1996, ( 2 ) : 175-188.
  • 4Arild Palmstrom. Characterizing rock masses by the RMi for use in practical rock engineering. Part 2: The development of the Rock Mass index (RMi). Tunneling and Underground Space Technology, 1996, ( 3 ) : 287 -303.
  • 5Bienlawski Z. T. Engineering classification of jointed mass, Trans. S. Africa Inst, Cir. Engrs, 1973, 15 (12) : 335-344.
  • 6宋笑雪.粗糙集理论及其应用[J].咸阳师范学院学报,2005,20(2):30-31. 被引量:10
  • 7郑治真 沈萍 杨选辉 万玉莉.小波变换及其MATLAB工具的应用[M].北京:地震出版社,2002..
  • 8Zhang Qinghua, Benveniste A. Wavelet networks. IEEETrans. on Neural networks. 1992, 3 (6) : 859-898.
  • 9潘国荣,谷川.变形监测数据的小波神经网络预测方法[J].大地测量与地球动力学,2007,27(4):47-50. 被引量:50
  • 10谭云亮,孙中辉,杜学东.冲击地压AE时间序列小波神经网络预测模型[J].岩石力学与工程学报,2000,19(z1):1034-1036. 被引量:11

二级参考文献21

共引文献72

同被引文献31

引证文献4

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部