摘要
准晶体不同于晶体晶胞的选取原则,须先考虑选取两种或三种基本菱形单胞,再考虑如何由这类菱形生成的组合准晶胞,既要考虑组合准晶胞的对称性,又要考虑它们铺满2维平面的原则,考虑到三角二十四面体分数维生长的优点,又考虑到正方形与30°,150°和 60°,120°菱形生成Penrose拼图优点,更重要的是组合准晶胞多重分数维生长的优点,在此基础上,我们提出一种新的12次对称性的准晶结构模型。(1)以3°,150°和 60°,120°菱形与正方形为基本单元生成组合准晶胞;(2)以组合准晶胞为单位操作;(3)以2.7321作准周期进行放大、缩小操作,即R_n=R_(n-1)×2.7321;(4)以高次对称轴(12次轴)作旋转操作;(5)生成12次准晶多重分数维结构模型。
Based on analysing and studying the research papers at home and abroad on 2-D quasicrystals, the selection principles of quasicrystal cell of 2-D quasicrystals are put forward. The fundamental property of a 2-D crystal is formed by periodic translation of only one of cells on the plan, while a 2-D quasicrystal is formed by quasiperiodic translation of two or three sorts of basic rhombi. The selection principles of quasicrystal cell, therefore, are different from that of crystal cell. These principles are applied respectively to the quasicrystals with 12-fold axis. The paper deduces the corresponding structural models: the structural model of quasicrystal with twelvefold symmetry. (1)Combining the basic units, 30 ° , 150 ° rhombus, 60 ° , 120 ° rhombus and square, form the combinational quasicrystal cell; (2) Doing the rotation operation with the combinational quasicrystal cell; (3)Doing the amplification or minification operation with the quasiperiod of 2.7321, that is, Rn= 2.7321 × Rn-1; (4)Doing the rotation operation with twelvefold axis; (5)In this way, the multifractal structural model of quasicrystal with twelvefold symmetry is gotten.
出处
《地球科学(中国地质大学学报)》
EI
CSCD
北大核心
1993年第S1期122-128,共7页
Earth Science-Journal of China University of Geosciences
基金
国家自然科学基金