期刊文献+

基于近邻关系的离群约简搜索算法 被引量:1

Searching Algorithm for Outlying Reduction Based on Neighbor Relation
在线阅读 下载PDF
导出
摘要 针对传统离群点检测过程中属性多、维度大等问题,结合粗糙集理论,提出一种基于近邻关系的离群约简搜索算法。利用属性约简技术解决对象不相容的问题,并有效缩减离群搜索的属性空间。计算任意点与其他所有点间的距离和,通过计算基于近邻的加权离群因子来判定离群点,并在通用数据集上进行测试。实验结果表明,该离群检测算法的搜索精度较高。 Traditional outlier detection algorithms often take all attributes of the dataset into account thus result in heavy cost for handling high dimensional data.This paper proposes a searching algorithm for outlying reduction based on neighbor relation inspired by rough set theory and related techniques.This approach employs attribute reduction technology on the inconsistent decision table,which reduces the attribute fields.It computes the sum distance of the current point to all the other points and formulates a neighbor-based outlier factor to judge the abnormality of the data object.Experimental results on the public dataset show that this method is efficient and effective.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第21期38-39,42,共3页 Computer Engineering
基金 江苏省自然科学基金资助项目(BK2008190)
关键词 离群点检测 离群因子 核属性集 决策表 近邻关系 outlier detection outlier factor core attribute set decision table neighbor relation
  • 相关文献

参考文献7

  • 1夏秀峰,谢光宇,石祥滨,徐蕾.基于置信区间的偏离群数据检测方法[J].计算机工程,2008,34(21):12-14. 被引量:3
  • 2He Zengyou, Xu Xiaofei. FP-outlier: Frequent Pattern Based Outlier Detection[J]. Computer Science and Information Systems, 2005, 2(1): 103-118.
  • 3Skowron A. The Discernibility Matrices and Functions in Infor- mation Systems[M]. [S. 1.]: Kluwer Academic Publishers, 1992.
  • 4葛浩,李龙澍,杨传健.新的可分辨矩阵及其约简方法[J].控制与决策,2010,25(12):1891-1895. 被引量:12
  • 5Chen Yumin, Miao Duoqian, Zhang Hongyun. Neighborhood Outlier Detection[J]. Expert Systems with Applicaton, 2010, 37(12): 8749-8750.
  • 6Knorr E, Ng R, Tucakov V. Distance-based Outliers: Algorithms and Applications[J]. The VLDB Journal, 2002, 8(3): 237-253.
  • 7Bay S D. The UCI KDD Repository[DB/OL]. [2010-06-20]. http://kdd.ics.uci.edu.

二级参考文献13

共引文献13

同被引文献10

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部