期刊文献+

基于laplacian坐标修正的3^(1/2)细分法

3^(1/2) Subdivision Based on Laplacian Coordinate
在线阅读 下载PDF
导出
摘要 根据原始网格对细分极限曲面的影响分析,提出了基于laplacian坐标修正的3^(1/2)插值网格细分方法。通过插值出面片中心点的laplacian坐标,来对动态生成的中心点进行修正,达到保持原始网格细节的目的。在非封闭网格的边界面片细分方面,指出了原始3^(1/2)细分法的不足,提出了一种新的边界统一细分模式,它可以很好地控制边界面片的增长,而且具有稳定性和易于操作性。实验结果表明,该方法不仅能够让原始网格的细节在极限曲面上得到表达,而且可以得到一个连续光滑的曲面网格。 According to the influence of the original mesh on the subdivided limited surfaces, we proposed a sqrt (3) subdivision method based on the laplacian coordinate. In order to preserve the details of the original mesh, the laplacian coordinate of the face's central point was interpolated and was used to modify itself. In side of the boundry face subidivision of the uncloseness mesh, we pointed out the lack of the original sqrt (3) method and proposed a new unified boundry-subdivided method. It can control the increasement of the faces and has the advantage of the stability, operabili- ty. The result of the experiment shows that the method can make the original mesh reveal on the limited surface and a limited smooth surface mesh can also be obtained.
出处 《计算机科学》 CSCD 北大核心 2011年第12期206-208,220,共4页 Computer Science
基金 国家自然科学基金项目(61073146) 重庆市杰出青年科学基金项目(2008BA2041) 重庆市高等教育教学改革研究项目(09-1-004)资助
关键词 laplacian坐标 3~1/2细分法 边界统一细分模式 三维网格结构 Laplacian coordinate,√3 subdivision,Uniform subdivision of boundry, 3D grid structure
  • 相关文献

参考文献18

  • 1Blinn J F. A generalization of algebraic surface drawing [J]. ACM Transaction on Graphics, 1982,1(3) : 23-25.
  • 2Catmull E, Clark J. Recursively generated B-spline surfaces on ar bitrary topological meshes[J]. Computer Aided Design, 1978, 10(6) :350-355.
  • 3Doo D,Sabin M. Behaviorof recursive division surfaces near extra-ordinary point [J].Computer Aided Design, 1978, 10 ( 6 ) : 356-360.
  • 4Loop C. Smooth Subdivision Based on Triangles[D]. University of Utah, 1987.
  • 5Dyn N, Levin D, Gregory J A. A butterfly subdivision schemes for surface interpolatory with tension control[J]. ACM transactions on Graphics, 1990,2(9) : 160-169.
  • 6Velho L. Quasi 4-8 subdivision[J]. Computer Aided Geometric Design, 2001,5 (18) : 345-357.
  • 7Kobbelt L. ∫3-subdivision [C]// Computer Graphics Processdings. Annual Conference Series. ACM SIGGRAPH, 2000:103- 112.
  • 8Oswald P, Sehroder P. Composite primal/dual-subdivision schemes[J]. Comput. Aided Geom. Design, 2003,20 (3) : 135-164.
  • 9吴剑煌,刘伟军,王天然.3^(1/2)互细分曲面的误差分析[J].机械工程学报,2007,43(2):104-109. 被引量:1
  • 10Jiang Qing-tang. Orthogonal and Biorthogonal √3-refinement Wavelets for Hexagonal Data Processing[J]. IEEE Transactions on Signal Processing, 2009,57 (11).

二级参考文献25

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部