期刊文献+

基于组合规则熵的一维二值元胞自动机行为研究 被引量:1

Behavior Research for One-Dimension Two-Value Cellular Automata Based on Combination Rules Entropy
在线阅读 下载PDF
导出
摘要 为在Langton参数的基础上对一维二值元胞自动机的性质及其动力学行为进行更细致的分析,提出了用组合规则熵刻画元胞自动机规则的方法并证明了一维二值元胞自动机组合规则熵的最大值和最小值定理。实验还进一步表明组合规则熵能够在Langton参数的基础上对元胞自动机的规则进行更细致的刻画,有利于对元胞自动机动力学行为的分析和提高对指定类型元胞自动机的搜索效率。 In order to conduct a more detailed analysis for one-dimension two-value cellular autom- ata's property and it's dynamic behaviors on the basis of Langton parameter, we present a meth- od to describe the regulations of cellular automata using the combination rules entropy and prove its maximum and minimum theorem of combination rules entropy. Experiments further show that combination rules entropy can conduct a more detailed characterization for cellular automata based on Langton parameter, which is benefit to the analysis of dynamic behaviors of cellular automata and the improvement of search efficiency for the specialized cellular automata.
出处 《复杂系统与复杂性科学》 EI CSCD 2011年第4期36-43,共8页 Complex Systems and Complexity Science
基金 国家自然科学基金(61040054) 高校基本科研基金(DC10020111)
关键词 元胞自动机 Langton参数 组合规则熵 动力学行为 cellular automata Langton parameter composition rules entropy dynamic behavior
  • 相关文献

参考文献14

  • 1von Neumann J.The General and Logical Theory of Automata[M].New York:Wiley,1951:1-26.
  • 2Melanie M.Computation in cellular automata:a selected review[EB/OL].[2011-3-20].http://www.santafe.Edu/sfi/publications/wpabstract/1996-09-074.1-41.
  • 3Guisado J,Jimenez F,Fernandez F.Cellular automata and cluster computing:an application to the simulation of laser dy-namics[J].Advances in Complex System,2007,10(1):167-190.
  • 4Christian D,Mario G,Marco T.Performance and roubustness of cellular automata computation on irregular networks[J].Advances in Complex System,2007,10(1):85-110.
  • 5周成虎 孙战利 谢一春.地理元胞自动机研究[M].北京:科学出版社,2001.34-38.
  • 6Wolfram S.Computation theory of cellular automata[J].Communications in Mathematical Physics,1984,96(1):15-57.
  • 7Langton C.Computation at the edge of chaos:phase transitions and emergent computation[D].Physica D,1990,42(1):12-27.
  • 8肖帕尔,德罗兹.物理系统的元胞自动机模拟[M].祝玉学,赵学龙,译.北京:清华大学出版社,2003,16-18.
  • 9Culick K,Yu F.Undecidability of CA classification scheme[J].Complex System,1988,2(2):177-190.
  • 10Marr C,Hutt M T.Topology regulates pattern formation capacity of binary cellular automata on graphs[J].Physica A,2005,354(2):641-662.

二级参考文献14

  • 1何云,陈若航,吕晓阳.一维DCA交通流模型分析[J].广西师范大学学报(自然科学版),1997,15(1):49-53. 被引量:11
  • 2李建会.人工生命:走向新的创世纪[J].二十一世纪(香港),2001,(2):78-82.
  • 3WOLFRAM S.Statistical mechanics of cellular automaton[J].Rev Mod Phy,1983,55(3):601-642.
  • 4MAERIVOET S,MOOR B D.Cellular automata model of road traffic[J].Physics Report,2005,419:9-12.
  • 5Wolfram S.A new kind of science.USA:Wolfram Media Inc,2002
  • 6Niloy G,Biplab K S,Andreas D,et al.A survey on cellular automata:]Technical report].Centre for High Performance Computing,Dresden University of Technology,2003.1~28
  • 7Langton C G.Computation at the edge of chaos:Phase transitions and emergent computation.Physica D,1990,42:12~37
  • 8Packard N H.Adaptation towards the edges of chaos.In:Kelso J A S,Mandell A J,Shlesinger M F,eds.Dynamic patterns in complex systems.Singapore:World Scientific,1988.293~301
  • 9Mitchell M,Hraber P T,Crutchfield J P.Revisiting the edges of chaos:Evolving cellular automata to perform computations.Complex Systems,1993,7(1):89~130
  • 10Li Wentian,Packard N H,Langton C G.Transition phenomena in cellular automate rule space.Physics D,1990,45:77~94

共引文献46

同被引文献15

  • 1韩筱璞,周涛,汪秉宏.基于元胞自动机的国家演化模型研究[J].复杂系统与复杂性科学,2004,1(4):74-78. 被引量:12
  • 2周涛,周佩玲,汪秉宏,杨春霞,蔡世民.元胞自动机用于金融市场建模[J].复杂系统与复杂性科学,2005,2(4):10-15. 被引量:4
  • 3Helbing D, Farkas L, Vicsek T. Simulating dynamical features of escape Panic[J]. Nature, 2000, 407(28):487- 490.
  • 4Shields T J, Boyce K E, McConnell N. The behaviour and evacuation experiences of WTC 9/11 evacuees with self-designated mobility impair ments[J]. Fire Safety Journal, 2009, (44): 881 -893.
  • 5Eriea D K, Dennis S M. Modeling pre-evacuation delay by occupants in world trade center towers 1 and 2 on September 11, 2001[J]. Fire Safety Journal, 2009, (44): 487-496.
  • 6Huang H J, Guo R Y. Static floor field and exit choice for pedestrian evacuation in rooms with internal obstacles and multiple exits[J]. Physical Review E, 2008,78(2): 021131.
  • 7Yuan W F, Tan K H. Simulation of pedestrian flow on square lattice based on cellular automata model[J]. Physica A, 2007, (384) : 567 - 588.
  • 8Alizadeh R. A dynamic cellular automaton model for evacuation process with obstacles[J]. Safety Science, 2011, (49) : 315 - 323.
  • 9Zheng X P, Li W, Guan C. Simulation of evacuation processes in a square with a partition wall using a cellular automaton model for pedestrian dynamics[J]. Physica A, 2010(389): 2177-2188.
  • 10Helbing D, Isobe M, Nagatani T, et al. Lattice gas simulation of experimentally studied evacuation dynamics[J]. Physical Review E, 2003, 67(6):067101.

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部