期刊文献+

变结构动态贝叶斯网络的机制研究 被引量:20

Study on the Mechanism of Structure-variable Dynamic Bayesian Networks
在线阅读 下载PDF
导出
摘要 传统的动态贝叶斯网络(Dynamic Bayesian networks,DBNs)描述的是一个稳态过程,而处理非稳态过程,变结构动态贝叶斯网络更适用、更灵活、更有效.为了克服现有变结构离散动态贝叶斯网络推理算法只能处理硬证据的缺陷,本文在深入分析变结构动态贝叶斯网络机制及其特征的基础上,提出了变结构离散动态贝叶斯网络的快速推理算法.此外,对变结构动态贝叶斯网络的特例,即数据缺失动态贝叶斯网络进行了定义并构建了相应的模型.仿真实验验证了变结构离散动态贝叶斯网络快速推理算法的有效性及计算效率. Traditional dynamic Bayesian networks (DBNs) are essentially models that describe a variety of stable processes. To deal with unstable processes,structure-variable dynamic Bayesian networks are more applicable,flexible,and effective. Currently,however,the various inference algorithms under consideration for structure-variable discrete dynamic Bayesian networks (DDBNs) can only handle hard evidence. In this paper,an in-depth and theoretical analysis is given for the mechanism and key characteristics of structure-variable dynamic Bayesian networks,and on this basis,a fast inference algorithm is proposed. Furthermore,a special class of structure-variable dynamic Bayesian networks,dynamic Bayesian networks with missing data,is defined rigorously along with associated network topology and parameter settings of such networks. Several experimental simulations have shown the effectiveness and effciency of our fast inference algorithm.
出处 《自动化学报》 EI CSCD 北大核心 2011年第12期1435-1444,共10页 Acta Automatica Sinica
基金 国家自然科学基金(60774064)资助~~
关键词 动态贝叶斯网络 推理 软证据 复杂度 Dynamic Bayesian networks (DBNs) inference soft evidences complexity
  • 相关文献

参考文献19

  • 1Jensen F V. An Introduction to Bayesian Networks. New York: Springer, 1996.
  • 2Jensen F V. Bayesian Networks and Decision Graphs. New York: Springer, 2001.
  • 3Dean T, Kanazawa K. A model for reasoning about persistence and causation. Computational Intelligence, 1989, 5(3): 142-150.
  • 4Rusell S, Norving P. Artificial Intelligence: A Modern Approach (Second Edition). New Jersey: Prentice Hall, 2003. 559-580.
  • 5Suandi S A, Enokida S, Ejima T. Face pose estimation from video sequence using dynamic Bayesian network. In: Proceedings of the IEEE Workshop on Motion and Video Computing. Copper Mountain, USA: IEEE, 2008. 1-8.
  • 6Han P X, Mu R J, Cui N G. Active and dynamic multi-sensor information fusion method based on dynamic Bayesian networks. In: Proceedings of the International Conference on Mechatronics and Automation. Changchun, China: IEEE. 2009. 3076-3080.
  • 7杜友田,陈峰,徐文立.基于多层动态贝叶斯网络的人的行为多尺度分析及识别方法[J].自动化学报,2009,35(3):225-232. 被引量:23
  • 8Peter Hearty, Norman Fenton, David Marquez, Martin Neil. Predicting project velocity in XP using a learning dynamic Bayesian network model. IEEE Transactions on Software Engineering, 2009, 35(1): 124-137.
  • 9金乃高,殷福亮,陈喆.基于动态贝叶斯网络的音视频联合说话人跟踪[J].自动化学报,2008,34(9):1083-1089. 被引量:7
  • 10Ghahramani Z. An introduction to hidden Markov models and Bayesian networks. International Journal of Pattern Recognition and Artificial Intelligence, 2001, 15(1): 9-42.

二级参考文献65

  • 1潘泉,于昕,程咏梅,张洪才.信息融合理论的基本方法与进展[J].自动化学报,2003,29(4):599-615. 被引量:187
  • 2郭小宾,王壮,胡卫东.基于贝叶斯网络的目标融合识别方法研究[J].系统仿真学报,2005,17(11):2713-2716. 被引量:18
  • 3杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 4高晓光,史建国.变结构离散动态贝叶斯网络及其推理算法[J].系统工程学报,2007,22(1):9-14. 被引量:22
  • 5Bengio Y. Markovian models for sequential data. Neural Computing Surveys, 1999, 2:129-162.
  • 6Gu H Y, Tseng C Y, Lee L S. Isolated-utterance speech recognition using hidden Maxkov models with bounded state durations. IEEE Transactions on Signal Processing, 1991, 39(8): 1743-1752.
  • 7Levinson S E. Continuously variable duration hidden Markov models for automatic speech recognition. Computer Speech and Language, 1986, 1(1): 29-45.
  • 8Russell M J, Moore R K. Explicit modeling of state occupancy in hidden Markov models for automatic speech recognition. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. Florida, USA: IEEE, 1985. 5-8.
  • 9Duong T V, Bui H H, Phung D Q, Venkatesh S. Activity recognition and abnormality detection with the switching hidden semi-Markov model. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 838-845.
  • 10Murphy K P. Dynamic Bayesian Network: Representation, Inference and Learning [Ph. D. dissertation], University of California, USA, 2002.

共引文献78

同被引文献155

引证文献20

二级引证文献122

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部