期刊文献+

铜单晶拉伸试样表面滑移带痕迹的晶体塑性分析 被引量:5

ANALYSIS OF SLIP-BAND TRACE ON SPECIMEN SURFACE OF SINGLE CRYSTAL COPPER UNDER TENSION
原文传递
导出
摘要 采用建立在晶体塑性理论基础上的晶体塑性有限变形计算方法,针对铜单晶试样单轴拉伸过程中晶体滑移在试样表面留下的滑移带痕迹进行了数值研究.作者利用三维有限元模拟不同取向铜单晶试样的拉伸变形,通过晶体塑性滑移面与试样表面交线的几何分析,得到了试样在不同晶向拉伸下不同滑移系启动造成的试样表面滑移痕迹,并对数值计算的试样表面滑移痕迹作了初步讨论.所得结果表明晶体塑性理论能够用于单晶试样拉伸试验的表面滑移带痕迹形成的分析. Based on the finite deformation theory of single crystal plasticity, the slip-band trace on the specimen surface of single crystal copper tensioned uniaxially is modeled by FEM with a finite deformation algorithm, and three dimensional plastic slipping is observed in computational simulation for single crystal copper specimen tensioned in different orientations. Through the geometric analysis of intersect-line between the active crystallographic slip-plane with specimen surface, we exhibit different slip-band traces on specimen surface, which are believed to come from different slip-planes activated by tension in different orientations. Good agreement between FEM results and experiment measurements indicate that the crystalline plasticity based computational simulation is available to study the formation of slip-band trace on the specimen surface of single crystal.
出处 《固体力学学报》 CAS CSCD 北大核心 2011年第6期557-565,共9页 Chinese Journal of Solid Mechanics
基金 国家自然科学基金(90815001 11072064) 广西大学科学基金资助
关键词 铜单晶 不同取向拉伸 滑移带痕迹 晶体塑性理论 single crystal copper, different orientation tension, slip-band trace, crystal plasticity
  • 相关文献

参考文献16

  • 1Hill R. Generalized constitutive relations for incre- mental deformation of metal crystals by multislip [J]. Journal of the Mechanics and Physics of Solids, 1966, 14: 95-102.
  • 2Hill R, Rice J R. Constitutive analysis of elastic-plas- tic crystal at arbitrary strain [J]. Journal of the Me- chanics and Physics of Solids, 1972, 20: 401-413.
  • 3Taylor G I, Elam C F. The distortion of an aluminum crystals during a tensile test [J]. Proceedings of the Royal Society of London Series A, 1923, 102: 643-667.
  • 4Taylor G I, Elam C F. The plastic extension and fracture of aluminum crystals [J]. Proceedings of the Royal Society of London Series A, 1925, 108:25-51.
  • 5Asaro R J, Rice J R. Strain localization in ductile sin- gle crystal [J]. Journal of the Mechanics and Physics of Solids, 1977, 25: 309-338.
  • 6Peirce D, Asaro R J, Needleman A. Material rate de- pendence and localized deformation in crystalline sol- ids [J]. Acta Metallurgica, 1983, 31:1951-1976.
  • 7Kalidindi S R, Bronkhorst C A, Anand L. Crystallo- graphic texture evolution in bulk deformation pro- cessing of FCC metals [J]. Journal of the Mechanics and Physics of Solids, 1992, 40:537-569.
  • 8Maniatty A M, Dawson P R, Lee Y S. A time inte- gration algorithm for elasto-viecoplastic cubic crystals applied to modeling polycrystalline deformation [J].International Journal for Numerical Methods in Engi- neering, 1992, 35: 1565-1588.
  • 9Yiping Chen,W.B. Lee,E. Nakamachi.CRYSTALLOGRAPHIC HOMOGENIZATION FINITE ELEMENT METHOD AND ITS APPLICATION ON SIMULATION OF EVOLUTION OF PLASTIC DEFORMATION INDUCED TEXTURE[J].Acta Mechanica Solida Sinica,2010,23(1):36-48. 被引量:3
  • 10万强,田晓耕,沈亚鹏.BCC晶体中韧位错运动特性的分子动力学模拟[J].固体力学学报,2004,25(3):345-348. 被引量:5

二级参考文献70

  • 1Bunge,H.J., Texture Analysis in Material Science. London: Butterworths, 1982.
  • 2Kocks,U.F. Eds., Texture and Anisotropy, Preferred Orientations, and Their Effect on Materials Properties. Cambridge University Press, 1998.
  • 3Adam,J. Eds., Electron Backscatter Diffraction in Materials Science. Kluwer Academic Press, 2000.
  • 4Nakamachi,E. and Dong,X., Study of texture effect on sheet failure in a limit dome height test by using elastic/crystalline visco-plastic Finite Element Analysis. Journal of Applied Mechanics Transactions, ASME(E), 1997, 64: 519-524.
  • 5Asaro,R.J. and Needleman,A., Texture development and strain hardening in rate dependent polycrystal. Acta metallurgical, 1985, 33: 923-953.
  • 6Miehe,C., Schroder,J. and Schotte,J., Computational homogenization analysis in finite plasticity - Simulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics Engineering, 1999, 171: 387-418.
  • 7Miehe,C., Schotte,J. and Lambrecht,M., Homogenization of inelastic solid materials at finite strains based on incremental minimization principle Application to the texture analysis of polycrystals. Journal of the Mechanics and Physics of Solids, 2002, 50: 2123-2167.
  • 8Terada,K., Yuge,K. and Kikuchi,N., Elasto-plastic analysis of composite materials by using the homogenization method (I): Formulation. Journal of Japan Society for Mechanical Engineering (4), 1995, 61(590): 91-97.
  • 9Terada,K., Yuge,K. and Kikuchi,N., Elasto-plastic analysis of composite materials by using the homogenization method (II). Journal of Japan Society for Mechanical Engineering (4), 1996, 62(601): 110-117.
  • 10Takano,N. and Zako,M., The formulation of homogenization method applied to large deformation problem for composite materials. International Journal of Solids and Structure, 2000, 37: 6517-6535.

共引文献24

同被引文献35

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部