期刊文献+

Stone-Wales拓扑缺陷对石墨烯拉伸力学性能的影响 被引量:8

THE EFFECT OF STONE-WALES TOPOLOGICAL DEFECTS ON THE TENSILE MECHANICAL PROPERTIES OF SINGLE GRAPHENE SHEETS
原文传递
导出
摘要 采用Tersoff势对含Stone-Wales(SW)拓扑缺陷的单层石墨烯薄膜的单向拉伸力学性能进行了分子动力学模拟,分别研究了SW拓扑缺陷对扶手椅型和锯齿型石墨烯拉伸力学性能及变形机制的影响.研究结果表明,单个SW缺陷对两种手性石墨烯薄膜的杨氏模量几乎无影响,而对薄膜的强度、应变等力学性能和变形破坏机制的影响与手性有关.对于扶手椅型石墨烯薄膜,单个SW缺陷降低了薄膜的拉伸强度和拉伸极限应变,降低幅度分别为5.04%和7.07%.在外载作用下,新的缺陷的萌生位置出现在SW缺陷附近;而对于锯齿型石墨烯薄膜,单个SW缺陷基本不影响薄膜的力学性能和变形破坏机制. The effect of Stone-Wales(SW) defects on the tensile mechanical properties and deformation mechanism of the zigzag and armchair single graphene sheets was investigated using molecular dynamics simulation with Tersoff bond-order interatomic potential. The numerical simulation results show that there is no effect on the Young's modulus of the two chiral graphene sheets due to the presence of single SW defect, while the effects on the tensile strength, strain and deformation mechanism are dependent on the chirality of graphene. For armchair graphene sheets, single SW defect is observed to reduce the tensile stress and limit tensile strain by as much as 5.04 % and 7.07 %, respectively. It is also found that SW defect serves as nucleation site for fracture under tension. However, for zigzag graphene sheets, single SW defect has no effect on the mechanical properties and deformation mechanism.
出处 《固体力学学报》 CAS CSCD 北大核心 2011年第6期619-624,共6页 Chinese Journal of Solid Mechanics
基金 江苏省自然科学基金项目(BK2011490) 上海市自然科学基金项目(11ZR1439100) 江苏大学高级人才科研启动基金项目(10JDG034) 国家自然科学基金项目(11102075)资助
关键词 石墨烯 Stone—Wales拓扑缺陷 力学性能 分子动力学方法 graphene, Stone-Wales topological defects, mechanical properties,molecular dynamics mothod
  • 相关文献

参考文献20

  • 1Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y,Dubonos S V,Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films [J]. Science, 2004,306 (5296) : 666-669.
  • 2Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007,6 (3) : 183-191.
  • 3Avouris P,Chen Z H, Perebeinos V. Carbon-based e- lectronics[J]. Nature Nanotechnology, 2007,2 (10) :605-615.
  • 4Li D, Kaner R B. Materials scienee-Graphene-based materials[J]. Science, 2008,320 (5880) : 1170-1171.
  • 5Lee C, Wei X D, Kysar J W, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer gra- phene[J]. Science, 2008,321 (5887) : 385-388.
  • 6Liu F, Ming P M, Li J. Ab initio calculation of ideal strength and phonon instability of graphene under tension[J]. Physical Review B, 2007,76 (6) :064120.
  • 7成会明,任文才.石墨烯-碳家族中又一种性质独特的新材料[G].2008科学发展报告,北京:科学出版社,2008:33-38.
  • 8Hashimoto A, Suenaga K, Gloter A, Urita K, Iijima S. Direct evidence for atomic dejects in graphene layers [J]. Nature,2004,430(7002) :870-873.
  • 9Meyer J C,Kisielowski C,Erni R,Rossell M D,Crom- mie M F,Zettl A. Direct imaging of lattice atoms and topological defects in graphene membranes[J].Nano Letters, 2008,8(11) : 3582-3586.
  • 10Ma J, Alfe D, Michaelides A, Wang E. Stone-Wales defects in graphene and other planar sp2-bonded ma- terials[J]. Physical Review B,2009,80(3):033407.

二级参考文献55

  • 1韩同伟 贺鹏飞 王健 等.单层石墨烯薄膜拉伸变形的分子动力学研究[J].新型碳材料,.
  • 2Lee W S, Lin C F. Impact properties and microstructure evolution of 304L stainless steel. Mat Sci Eng A, 2001, 308(1-2): 124-135.
  • 3Meyers M A. Dynamics Behavior of Materials. New York: John Wiley& Sons Inc, 1994.
  • 4Lu L, Li S X, Lu K. An abnormal strain rate effect on tensile behavior in nanocrystalline copper. Scripta Mater, 2001, 45(10): 1163- 1169.
  • 5Chen J, Lu L, Lu K. Hardness and strain rate sensitivity of nanocrystalline Cu. Scripta Mater, 2006, 54(11): 1913-1918.
  • 6Wang Y M, Ma E. Temperature and strain rate effects on the strength and ductility of nanostructured copper. Appl Phys Lett, 2003, 83(15): 3165-3167.
  • 7Wang Y M, Ma E. Strain hardening, strain rate sensitivity, and ductility of nanostructured metals. Mat Sci Eng A, 2004, 375(77): 46-52.
  • 8Liu Z L, You X C, Zhuang Z. A mesoscale investigation of strain rate effect on dynamic deformation of single-crystal copper. Int J Solids Struct, 2008, 45(13): 3674-3687.
  • 9Dalla Torre F, Van Swygenhoven H, Victoria M. Nanocrystalline electrodeposited Ni: Microstructure and tensile properties. Acta Mater, 2002, 50(15): 3957-3970.
  • 10Schwaiger R, Moser B, Dao M, et al. Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater, 2003, 51(17): 5159-5172.

共引文献22

同被引文献80

  • 1许雅周,丁锐,常传平.粉体团聚理论在超细研磨中的应用[J].陶瓷,2007(3):30-33. 被引量:13
  • 2樊叶华,黄卫,王敬民,陈雄飞.江阴大桥钢桥面柔性防水粘结层特性分析[J].公路交通科技,2007,24(6):33-36. 被引量:21
  • 3王春,纳米金刚石-碳纳米管-石墨烯性能的第一原理研究.吉林大学博士学位论文.
  • 4Robert F.Service,Carbon Sheets an Atom Thick Give Eise to Graphen e Dreams,Science 324, 875-877.
  • 5Meyer J C Geim A K,Katsnelson M I,et aI.The structure of suspended graphene sheets. Nature, 2007,446(7131 ): 60-63.
  • 6Meyer J C,deim A K,Katsnelson M I,et al.On the roughness of single- and bi-layer graphene membrances. Solid State Commun, 2007, 143(1-2): 101-109.
  • 7Iahigami M,Chen J H,Cullen W G,et aI.Atomic structure of graphene on SiO2 .Nano Letters, 2007,7(6):1643-1648.
  • 8Fasolino A,Los J H,Katsnelson M I.Intrinsic ripples in graphene. Nature Matericals,2007,6(11):858-861 .
  • 9Carlsson J M.Buckle or break.Nature Materials 2007 6(11)801- 802.
  • 10李婷.湘潭大学硕士学位论文.2011.

引证文献8

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部