期刊文献+

基于凸模型的结构非概率可靠性指标及其求解方法研究 被引量:10

STUDY ON STRUCTURAL NON-PROBABILISTIC RELIABILITY INDEX UNDER CONVEX MODELS AND ITS SOLUTION METHODS
原文传递
导出
摘要 当不确定性信息量不足以精确确定概率模型时,基于凸模型的非概率可靠性理论为工程结构安全性提供一种有效的评估方法.论文基于材料、几何及荷载大小等不确定性因素扰动界限的多椭球模型描述,运用标准化变换和标准空间广义无穷范数度量,给出定义非概率可靠性指标的极小极大优化数学模型.该非概率可靠性指标可理解为结构所能容许的参数不确定范围与实际不确定范围的相对"长度"比值.通过对极限状态方程的线性化近似,推导优化问题的显式迭代公式,实现非概率可靠性指标的简便求解.数值算例验证了论文迭代算法的正确性和有效性. In the circumstances of hardly defining precise probability distributions of uncertainties when only a limited number of sample information is available, the non-probabilistic reliability based on convex models serves as an effective approach for structural safety assessment. Based on the multi-ellipsoid model description for bounds of uncertainties in material properties, geometric dimensions and loading conditions,a min-max mathematical definition of the non-probabilistic reliability index is presented by using the normalized transformation and the generalized infinity norm measurement. The presented non-probabilistic reliability index can be regarded as the relative "length" ratio of the structural allowable variation range to the reference variation range. By approximating the limit-state function with linear expansion, an explicit iterative algorithm is presented for solving the non-probabilistic reliability index conveniently. Numerical examples are given to illustrate the validity and efficiency of the present iterative approach.
出处 《固体力学学报》 CAS CSCD 北大核心 2011年第6期646-654,共9页 Chinese Journal of Solid Mechanics
基金 国家自然科学基金(51008248) 陕西省自然科学基金(2010JQ1008) 西北工业大学基础研究基金(JC200936)资助
关键词 多椭球模型 非概率 广义无穷范数 可靠性指标 迭代算法 multi-ellipsoid model,non-probabilistic, generalized infinity norm, reliability index, iteration algorithm
  • 相关文献

参考文献20

  • 1Elishakoff I. Essay on uncertainties in elastic and vis- coelastic structures: From AM Freudenthal's criti- cisms to modern convex rnodeling[J]. Computers and Structures, 1995,56 (6) :871-895.
  • 2Ben-Haim Y. A non-probabilistic concept of reliability[J]. Structural Safety, 1994,14(4) : 227-245.
  • 3Ben-Haim Y,Elishakoff I. Convex Models of Uncer- tainty in Applied Mechanies[M]. Amsterdam: Elsevi- er,1990.
  • 4Xie Jun,Sun Yan,Guan Gang.A NEW METHOD FOR THE UNCERTAIN RESPONSE ANALYSIS OF STRUCTURES WITH UNCERTAIN PARAMETERS[J].Acta Mechanica Solida Sinica,2003,16(1):47-51. 被引量:1
  • 5邱志平,王晓军,马智博.结构疲劳寿命估计的集合理论模型[J].固体力学学报,2006,27(1):91-97. 被引量:13
  • 6Ben-Haim Y. A non-probabilistic measure of reliabili- ty of linear systems based on expansion of convex models[J]. Structural Safety, 1995,17 (2) : 91-109.
  • 7Elishakoff I. Discussion on: A non-probabilistic con- cept of reliability[J]. Structural Safety, 1995,17 (3) : 195-199.
  • 8Jiang C,Han X,Liu G R with uncertain constraints Optimization of structures based on convex model and satisfaction degree of interval[J]. Computer Methods in Applied Mechanics and Engineering, 2007,196 (49- 52) :4791-4800.
  • 9郭书祥,吕震宙,冯元生.基于区间分析的结构非概率可靠性模型[J].计算力学学报,2001,18(1):56-60. 被引量:294
  • 10Jiang T, Chen J,Xu Y. A semi-analytic method for calculating non-probabilistic reliability index based on interval models[J]. Applied Mathematical Modelling, 2007,31 (7) : 1362-1370.

二级参考文献57

共引文献358

同被引文献86

引证文献10

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部