期刊文献+

基于高斯混合模型的海冰图像非监督聚类分割研究 被引量:6

Sea ice image segmentation with unsupervised clustering based on the Gaussian mixture model
在线阅读 下载PDF
导出
摘要 为了利用海冰图像识别技术获取海冰冰况信息,探索了利用高斯混合模型进行海冰图像分割的技术途径,描述了具体算法,并利用高斯混合模型的最大期望值(EM)算法以及最小描述长度(MDL)准则对渤海海冰图像进行目标提取。研究结果表明,该方法可以很好地实现海冰信息的有效提取和海冰图像的有效分割,从而证明了建立在图像分割技术之上的海冰图像识别技术是处理海冰图像进而获得冰型、冰量等冰况信息的有效技术手段。 In order to obtain sea ice data from in situ video images, sea ice images were processed with image segmentation technology based on the Gaussian mixture model (GMM). Image segmentation of the Bohai sea ice with unsupervised clustering was realized by the expectation-maximization (EM) algorithm of GMM and minimum description length (MDL) criterion on the sea ice images for object extraction. The calculation procedures of sea ice image segmentation was described. The results indicate that GMM is effective in sea ice image segmentation and sea ice data extraction. It is concluded that sea ice image recognition, based on image segmentation, is an effective technology to process sea ice image for extraction of data on sea ice type and abundance.
出处 《海洋科学》 CAS CSCD 北大核心 2011年第11期97-100,共4页 Marine Sciences
基金 中国海洋石油总公司科技发展项目(C/KJFJDSY003-2008)
关键词 海冰 高斯混和模型 图像分割 非监督聚类 sea ice Gaussian mixture model image segmentation unsupervised clustering
  • 相关文献

参考文献9

  • 1Coleman G B, Andrews H C. Image segmentation by clustering[J]. Proc IEEE, 1979, 5(67): 773-785.
  • 2刘健庄.基于二维直方图的图象模糊聚类分割方法[J].电子学报,1992,20(9):40-46. 被引量:67
  • 3Trivedi M M, Bezdek J C. Low-level segmentation of aerial image with fuzzy clustering[J]. IEEE SMC, 1986, 16(4): 589-598.
  • 4Porter R, Canagarajah N. A robust automatic clustering scheme for image segmentation using wavelets[J] IEEE Image Processing, 1996, 5(4): 662-665.
  • 5Chaudhuri B B, Sarkar N. Texture segmentation using fractal dimension[J]. IEEE PAMI, 1995, 17(I): 72-77.
  • 6Chen S W, Chen C F, Chen M S, et al. Neural-fuzzy classification for segmentation of remotely sensed images[J]. IEEE Signal Processing, 1997, 45(11) 2639-2654.
  • 7Shih F Y, Moh J, Chang Fuchun. A new art-based neural architecture for pattern classification and image enhancement without prior knowledge[J]. Pattern Recognition, 1992, 25(5): 533-542.
  • 8Lai Weichi. A VLSI neural processor for image data compression using self-organization networks[J]. IEEE Neural Networks, 1993, 3(3): 506-517.
  • 9向日华,王润生.一种基于高斯混合模型的距离图像分割算法[J].软件学报,2003,14(7):1250-1257. 被引量:54

二级参考文献10

  • 1Jiang XY, Bunke H. Edge detection in range images based on scan line approximation. Computer Vision and Image Understanding,1999,73(2): 183~ 199.
  • 2Hoover A, Jean-Baptiste G, Jiang XY, Flynn PJ, Bunke H, Goldgof DB, Bowyer K, Eggert DW, Fitzgibbon A, Fisher RB. An experimental comparison of range image segmentation algorithms. IEEE Transactions on PAMI, 1996,18(7):673--689.
  • 3Hoffman R, Jain AK. Segment and classification of range images. IEEE Transactions on PAMI, 1996,9(5):608---620.
  • 4Bihnes JA. A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models. 1998. http://ssli.ee.washington.edu/people/bihnes/mypapers/em.ps.gz.
  • 5Redner RA, Walker HF. Mixture density, maximum likelihood and the EM algorithm. SIAM Review, 1984,26(2):195~239.
  • 6Hoover A, Powell MW. Range image segmentation comparison project. Department of Computer Science and Engineering,University of South Florida, 1996. http://marathon.csee.usf.edu/range/seg-comp/SegComp.html.
  • 7Raflery AE. Approximate Bayes factors and accounting for model uncertainty in generalizes linear model. Technical Report, 1993.http://www.stat.washington.edu/www/research/reports/1993/tr255 .ps.
  • 8Fraley C, Raftery AE. How many clusters? Which clustering method? Answers via model-based cluster analysis. Technical Report,1998. http://www.stat.washington.edu/www/research/reports/1998/tr329.ps.
  • 9Buhmann/M. Data clustering and learning. 2002. http://www-dbv.cs.uni-bonn.de,/pdf/buhmann.hobtann02.pdf.
  • 10刘健庄,1990年

共引文献119

同被引文献57

  • 1ZHONG Jibin,YAN Ronghui,ZHANG Haitao,FENG Yihan,LI Nan,LIU Xingjun.A decomposition method of nuclear magnetic resonance T2 spectrum for identifying fluid properties[J].Petroleum Exploration and Development,2020,47(4):740-752. 被引量:4
  • 2彭鹏飞.海事风险研究中定量分析与定性分析的比较(英文)[J].大连海事大学学报,2008,34(S2):41-45. 被引量:1
  • 3张超谟,陈振标,张占松,李军,令狐松,孙宝佃.基于核磁共振T_2谱分布的储层岩石孔隙分形结构研究[J].石油天然气学报,2007,29(4):80-86. 被引量:78
  • 4刘田田.可见光海面航拍图像的分析与辨别[D].深圳:深圳大学,2011.
  • 5刘颖.航拍海洋图像的分析与分割[D].深圳:深圳大学,2012.
  • 6刘颖,裴继红,谢维信,王荔霞.基于背景学习的海洋图像分割方法[A].第四届中国信息融合大会[C].武汉,2012.692-698.
  • 7Figueiredo M A T, Jain A K. Unsupervised learning of finite mixture models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21302,24(3) : 381 - 396.
  • 8Yang A Y,Wright J,Ma Y,Sastry S S. Unsupervised segmen- tation of natural images via lossy data compression[J]. Com- puter Vision and Image Understanding, 2008, 110 ( 2 ) : 212 - 225.
  • 9Hanan At-Jubouri, Hongbo Du, Harin Sellahewa. Applying Guassianmixture model on discrete Cosine features for image segmentation and classification[ A]. 2012 4th Computer Sci- ence and Electronic Engineering Conference (CEEC) [ C ]. U- niversity of Essex,UK,2012. 194- 199.
  • 10Wei Li, Saurabh Prasad, James E Fowler. Classification and reconstruction from random projections for hyperspectral im- agery[J]. IEEE Transactions on Geoscience and Remote Sensing,2013,51 (2) :833 - 843.

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部