期刊文献+

基于三步筛选的视频渐变镜头检测 被引量:3

Video Gradual Transition Shot Detection Based on Three Steps Filter
在线阅读 下载PDF
导出
摘要 针对视频中的叠化与淡入淡出现象,提出一种基于三步筛选的渐变镜头检测算法。提取视频帧的亮度和方差作为特征,通过有限状态机实现初始渐变检测,并计算视频帧的颜色、共生矩阵、运动特征,从而进行三步筛选,保证检测的准确性。对TRECVID视频进行实验,结果表明,该算法对渐变具有较好的检测性能,对运动及闪光现象有较强的鲁棒性。 Aiming at the dissolve and fade in fade out phenomenon of video, this paper proposes a video shot detection algorithm based on three steps filter. A finite state machine is used to search gradual transition candidates in intensity variance continuity signal, and verify those to get real gradual transitions, next, extract color, texture and motion feature of video frame to guarantee the precision of gradual shot detection. Experimental results based on the videos from TRECVID demonstrate good performance of the algorithm and its robustness against disturbances caused by object motion or flashlight.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第24期269-271,共3页 Computer Engineering
基金 基金项目:2010年重庆市高等教育教学改革基金资助重大项目(101404) 2011年重庆市教委科学技术研究基金资助项目(KJ113201) 2010年中国航天科技集团第七研究院青年科技创新基金资助项目([2010]776)
关键词 镜头检测 共生矩阵 视频帧 运动特征 渐变 shot detection co-occurrence matrix video frame motion feature gradual transition
  • 相关文献

参考文献13

  • 1Hanialic A. Shot-boundary Detection: Unraveled and Resolved[J]. IEEE Trans. on Circuits and Systems for Video Technology, 2002, 12(2): 90-105.
  • 2Quenot G M, Moraru D, Besacier L. CLIPS at TRECVID: Shot Boundary Detection and Feature Detection[C] //Proc. of TRECVID’03. Gaithersburg, Maryland, USA: [s. n.] , 2003.
  • 3Zhang Jiang, Kankanhalli A, Smoliar S. Automatic Partitioning of Video[J]. Multimedia Systems, 2008, l(1): 10-28.
  • 4Pickering M J, Ruger S M. Multi-timescale Video Shot-change Detection[C] //Proc. of the 10th Text Retrieval Conference. Gaithersburg, Maryland, USA: [s. n.] , 2001.
  • 5Li Zhenming, Jiang Jianmin, Xiao Guoqiang, et al. An Effective and Fast Scene Change Detection Algorithm for MPEG Com- pressed Videos[C] //Proc. of ICIAR’06. Porto, Portugal: [s. n.] , 2006.
  • 6白雪生,张子银,徐光祐,杨士强,史元春.数字视频特技镜头转换检测算法的分析[J].软件学报,2002,13(7):1278-1283. 被引量:9
  • 7Zabih R, Miller J, Mai K. A Feature-based Algorithm for Detecting and Classifying Scene Breaks[C] //Proc. of ACM Multimedia Conference. San Francisco, USA: [s. n.] , 2007.
  • 8Hirzalla N. Automatic Cut and Camera Operation Detection for Video[C] //Proc. of International Conf. on Consumer Electronics. Rosemont, USA: [s. n.] , 2005.
  • 9施游,黄少年,张友生.基于交互信息量和联合熵的镜头检测算法[J].计算机工程与应用,2006,42(30):54-56. 被引量:8
  • 10李江,孙立军.基于凸包裁剪的行人视频检测算法[J].计算机工程,2010,36(2):173-175. 被引量:6

二级参考文献20

  • 1朱稼兴.信息和熵[J].北京航空航天大学学报,1995,21(2):84-90. 被引量:13
  • 2曾智勇,张学军,崔江涛,周利华.基于显著兴趣点颜色及空间分布的图像检索新方法[J].光子学报,2006,35(2):308-311. 被引量:21
  • 3徐长发,李国宽.实用小波方法[M].2版.武汉:华中科技大学出版社,2004.
  • 4Zhang H J,Kankanhalii A,Smolia S.Automatic partitioning of fullmotion video[J].Muhimedia Systems, 1993,1 (1): 10-28.
  • 5Alattar A M.Wipe scene change detection for use with video compression algorithms and MPEG--7[J].IEEE Transactions on Consumer Electronics, 1998,44 ( 1 ) : 43-50.
  • 6Gargi U,Kasturi R,Strayer S H.Performance characterization of video-shot-change detection methods[J].IEEE Transactions on Circuits and System for Video Technology,2000,10( 1 ): 1-13.
  • 7Treetasanatavom S,Heuer J.Temporal video segmentation using global motion estimation and discrete curve evolution [C]//IEEE ICIP2004.Singapore: IEEE Press, 2004: 385-388.
  • 8The open video projeet[EB/OL].http://www.open-video.org.
  • 9Maes F,CoUignon A,Vandermeulen D.Muhi-modality image registration by maximization of mutual information[J].IEEE Trans Medical Imaging, 1997,16(2) : 187-198.
  • 10Bennett N, Burridge R, Saito N. A Method to Detect and Characterize Ellipses Using the Hough Transform[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 1999, 21(7): 652-657.

共引文献23

同被引文献23

  • 1李清勇,胡宏,施智平,史忠植.基于纹理语义特征的图像检索研究[J].计算机学报,2006,29(1):116-123. 被引量:25
  • 2胡双演,李钊.基于内容的视频分析技术研究[J].无线电通信技术,2006,32(5):42-44. 被引量:6
  • 3刘俊晓,孟祥增,刘旭花,吴鹏飞.基于帧差与非相邻帧差的自适应镜头检测方法[J].计算机工程与应用,2007,43(24):212-215. 被引量:8
  • 4Quenot G M, CLIPS at TRECVID. Shot Boundary Detection and Feature Detection [ C ]//Proc. of TRECVID' 03. Gaithersburg, Maryland, USA.. [s. n.], 2003:255-261.
  • 5Zhenming Li, Jianmin. Jiang, G. Xiao and H. Fang. An Effective and Fast Scene Change Detection Algorithm for MPEG Compressed Videos [C]// Proc. of ICIAR' 06. Porto, Portugal: [s. n.], 2006.44- 49.
  • 6Zabih R, Miller J, Mai K. A Feature-based Algorithm for Detecting and Classifying Scene Breaks[C]//Proc. of ACM Multimedia Conference. San Francisco, USA: [s. n.], 2007.168-173.
  • 7Lienhart R. Reliable Transition Detection in Videos: A Surveyand Practitioner's Guide[J]. Intemational Joumal of Image and Graphics, 2001, 1(3): 469-486.
  • 8Ngo C W. A Robust Dissolve Detector by Support Vector Machine[C]//Proc. of the llth ACM International Conference on Multimedia. New York, USA: ACM Press, 2003: 283-286.
  • 9Truong B T, Dorai C, Venkatesh S. Improved Fade and Dissolve Detection for Reliable Video Segmentation[C]//Proc. of International Conference on Image Processing, Vancouver, Canada: IEEE Press, 2000: 961-964.
  • 10Proakis J. Probability, Random Variables, and Stochastic Processes[M]. New York, USA: McGraw Hill Inc., 1991.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部