期刊文献+

一种低复杂度的网络链路时延估计及仿真研究 被引量:1

Approach and Simulation of Network Link Delay Estimation with Low Computation Complexity
在线阅读 下载PDF
导出
摘要 网络时延是重要的网络性能指标,是网络服务质量测量与分析领域的重要目标之一。在网络拓扑已知且稳定及链路性能时空独立性的假设前提下,给出了网络链路时延估计模型和端时延数据采集方法,提出了一种低复杂度的网络链路时延估计方法。首先应用伪似然估计,然后确定可解的探测单元,通过限制平均采样精度和探测单元链路数的增加来显著降低计算复杂度,解决了计算复杂度过高的链路时延估计求解问题。最后利用基于NS2的仿真研究验证了时延估计方法的有效性和准确性。 Network delay is one of the important network performance parameters,and it is one of the important objectives in the study field of network service quality measurement and analysis.Based on the assumptions that network topology structure was known and stable,and the link performance was temporally and spatially independent,the network link delay estimation model and end-to–end delay data acquisition were presented.An approach to network internal link delay estimation with low computation complexity was proposed.Firstly,Pseudo Likelihood Estimation(PLE) was adopted.Secondly,estimation units with definite solution were determined.By means of controlling the increase of average sampling precision and estimation unit links,the computation complexity of link delay estimation was significantly lowered.This approach can solve the problem of high computation complexity of network link delay estimation.Finally simulation study was performed on NS2 platform.The simulation results show that the approach is effective and accurate.
出处 《计算机仿真》 CSCD 北大核心 2011年第12期107-110,248,共5页 Computer Simulation
基金 国家自然科学基金项目(61172165) 广东省自然科学基金项目(S2011010000697) 广东省高等职业院校珠江学者岗位计划资助项目(2011) 深圳市基础研究计划-杰出青年基金项目(JC201005280613A)
关键词 网络链路时延 时延估计模型 伪似然估计 计算复杂度 Network link delay Delay estimation model Pseudo likelihood estimation(PLE) Computation complexity
  • 相关文献

参考文献13

  • 1杨镜宇,毕长剑.战役训练仿真系统的网络延时分析[J].计算机仿真,2001,18(5):10-12. 被引量:4
  • 2lain Phillips, Mark Sandford, David Parish. Processing Network Delay Measurements into Network Events [ C ]. Proceedings of the IEEE/IFIP Network Operations and Management Symposium (NOMS 2000), Honolulu, U. S. A, April 2000. 955 -956.
  • 3Gang Liang, Bin Yu. Maximum Pseudo Likelihood Estimation in Network Tomography[ J]. IEEE Transactions on Signal Processing, 2003,8(51 ) :2043 -2053.
  • 4李贵山,蔡皖东.网络链路时延分布估计方法研究[J].计算机工程与应用,2009,45(8):20-22. 被引量:9
  • 5Yolanda Tsang, Mark Coates, Robert D Nowak. Network Delay Tomography[ J]. IEEE Transactions on Signal Processing, 2003,8 (51) :2125 -2135.
  • 6刘瑞芳,谢东.采用多播依赖树模型推测链路时延分布[J].信息工程大学学报,2007,8(4):422-424. 被引量:5
  • 7Guo Dong, Wang Xiaodong. Bayesian Inference of Network Loss and Delay Characteristics with Applications to TCP Performance Prediction[ J]. IEEE Transactions on Signal Processing, 2003,8 (51) :2205 - 2218.
  • 8Meng - Fu Shih, Alfred O Hero. Unicast Inference of Network Link Delay Distributions from Edge Measurements [ C ]. Proceedings of the IEEE International Conference on Accost Speech andSignal Processing, Salt Lake City, U. S. A, May 2001,6:3421 - 3424.
  • 9焦利,林宇,王文东,金跃辉,程时端.一种负载均衡网络中内部链路时延推测算法[J].软件学报,2005,16(5):886-893. 被引量:13
  • 10Earl Lawrence, George Michailidis, Vijayan N Nair. Fast, Moment -Based Estimation Methods for Delay Network Tomography [J]. IEEE Transactions on Signal Processing. 2008, (9):1 - 22.

二级参考文献35

  • 1Vardi Y.Networks tomography:Estimating source-destination traffic intensities from link data[J].Journal of the American Statistical Association, 1996,91 : 365-377.
  • 2Coates M,Hero A,Nowak R,et al.Internet tomography[J].IEEE Signal Processing Magazine,2002,19(3):47-65.
  • 3Tsang Y,Coates M,Nowak R D.Networks delay tomography[J].IEEE Transactions on Signal Processing, 2003,51 (8) : 2125-2136.
  • 4Glasserman P, Heidelberger P, Shahabuddin P.Variance reduction techniques for estimating value-at-risk[J].Management Science,2000, 46(10): 1349-1364.
  • 5Kay S M,Saha S.Mean likelihood frequency estimation[J].IEEE Trans on Signal Processing, 2000,48 (7) : 1937-1946.
  • 6Tokinaga S,Takagi N.Decomposition of surface data into fractal signals based on mean likelihood and importance sampling and itsapplications to feature extraction[J].IEICE Transactions on Funda- mentals, 2005, E 88-A ( 7 ) : 1946-1956.
  • 7Liang G,Yu B.Maximum pseudo likelihood estimation in networks tomography[J].IEEE Transactions on Signal Processing,2003,51(8): 2043-2053.
  • 8Homem-de-Mello Tito,Rubinstein R Y.Estimation of rare event probabilities using cross-entropy[C]//Proceedings of the 2002 Winter Simulation Conference.New York:IEEE,2002:310-319.
  • 9Villen-Ahamirano M,Martinez-Marron A,Gamo Let al.Enhancement of the accelerated simulation method RESTART by considering muhiple thresholds[C]//Labetoulle J,Roberts J W.Proceedings 14th International Tele Traffic Congress,The Fundamental Role of Teletraffic in the Evolution of Telecommunications Networks.North- Holland:Elsevier Science Publishers, 1994:797-810.
  • 10Sadowsky J S.On the optimality and stability of exponential twisting in Monte Carlo simulation[J],IEEE Transactions on Information Theory(S0018-9448 ), 1993,39( 1 ) : 119-128.

共引文献21

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部