期刊文献+

基于在线自适应遗传算法的PID参数整定和优化 被引量:16

Optimized and Adjust the Parameter of PID Based on On-line Adaptive Genetic Algorithms
在线阅读 下载PDF
导出
摘要 研究自动控制系统优化问题,控制系统响应特性取决于系统参数的调整。针对传统的PID控制算法参数较多,且难以整定,使得控制效果不理想等问题,提出了自适应遗传算法的PID参数整定。根据遗传算法具有在线性差的问题,对遗传算法作了改进。通过自适应遗传算法对PID参数进行整定与寻优,选择自适应度大的个体所对应的PID控制参数作为采样时间下的PID控制参数。改进后的算法有效提高了遗传算法的寻优能力,提高了算法的收敛的速度,在一定的范围可以求得最优全局解。在MATLAB上仿真结果表明,在PID参数的寻优过程中,自适应遗传算法具有更强的寻优能力,提高了控制系统的自适应性,为优化控制系统设计提供了依据。 For the many parameters and difficult setting,the traditional PID control algorithm can notthe implement effective control.An adaptive genetic algorithm was proposed based on the PID parameter tuning algorithm.The genetic algorithm with poor linear was improved.The adaptive genetic algorithm was used in tuning of PID parameters and optimization,and the the individual PID control parameters with high fitness value was selected as the PID control parameters at the sampling time.The improved algorithm can effectively improve the optimization ability of genetic algorithms and the convergence speed.The global optimal solution can be obtained in a certain range.The simulation results based on MATLAB show that in the optimization process of the PID parameters,the adaptive genetic algorithm has stronger ability to enhance the adaptability of the control system.
作者 张巍 卢宇清
出处 《计算机仿真》 CSCD 北大核心 2011年第12期154-157,共4页 Computer Simulation
关键词 遗传算法 参数 自适应 Genetic algorithms(GA) Parameter Adaptive
  • 相关文献

参考文献8

二级参考文献39

  • 1熊焰,陈欢欢,苗付友,王行甫.一种解决组合优化问题的量子遗传算法QGA[J].电子学报,2004,32(11):1855-1858. 被引量:50
  • 2张良杰,毛志宏,李衍达.遗传算法中突变算子的数学分析及改进策略[J].电子科学学刊,1996,18(6):590-595. 被引量:26
  • 3玄光男[日] 程润伟.遗传算法与工程设计[M].北京:科学出版社,2000.31-66.
  • 4Tang K S, Man K F, Wong S K, et al. Genetic algorithms and their applications[J]. IEEE Signal Process,1999, 13(6) :22 - 37
  • 5Wang Yong. Modified genetic algorithm approach to design an optimal PID controller for AC-DC transmission systems [J]. Electrical Power and Energy Systems,2002, (24): 59 - 69
  • 6陶永华 尹怡欣 葛芦生.新型PID控制及其应用[M].北京:机械工业出版社,1999..
  • 7John Preskill.Lecture Notes for Physics 229:Quantum Information and Computation [C].USA:California Institute of Technology,1998.
  • 8DiVincenzo D P.Two-bit gates are universal for quantum computation[J].Phys,Rev.A,1995,51(2):1015-1022.
  • 9Narayanan A,Moore M.Quantum inspired genetic algorithms[A].Proceedings of the 1996 IEEE International Conference on Evolutionary Computation (ICEC96) [C].USA:IEEE Press,1996.61-66.
  • 10Kuk-Hyun Han,Jong-Hwan Kim.Genetic quantum algorithm and its application to combinatorial optimization problem[A].Proceedings of the 2000 IEEE Congress on Evolutionary Computation[C].USA:IEEE Press,2000.1354-1360.

共引文献216

同被引文献129

引证文献16

二级引证文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部