期刊文献+

基于扩展三角特征的AdaBoost快速人眼检测算法 被引量:1

AdaBoost fast eye detection algorithm based on extended triangular features
原文传递
导出
摘要 首先给出了通过矩形块与三角像素特征块相结合所构造的八种用于眼睛检测的扩展三角特征原型块.考虑扫描块在人脸背景中遍历时眼睛样本图像块数量远少于非眼睛样本块数的实际,提出了一种结合Haar特征和三角特征的AdaBoost快速眼睛检测算法.通过级联分类器的前几层强分类器完成排除大部分非眼睛样本;然后,通过后续强分类器进行判断大部分的眼睛图像块和少量非眼睛图像块.检测时间消耗有所下降,这样可以保证整体的检测速度.实验结果进一步表明该算法具有更好的检测性能,与仅使用Haar特征相比正检率有一定程度提高. Eight extended feature prototypes were presented by combining rectangular feature blocks and triangular feature blocks. In consideration of the fact that the amount of eye image blocks is far less than that of non-eye image blocks during a scanning block passing through face images, a fast eye location detection scheme based on AdaBoost algorithm combining rectangular feature blocks and triangular feature blocks was proposed. After most of non-eye blocks are excluded through the foregoing strong classifiers, most eye image blocks and a few of non-eye image blocks are detected through the rear parts of the cascade classifier, which can reduce the detection time and boost the detection speed. The experiments further show that the scheme has better detection performance and positive detection rate compared to the case only employed Haar features.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2012年第1期48-52,共5页 Journal of University of Science and Technology Beijing
基金 国家自然科学基金资助项目(60874045) 江苏省高校自然科学研究资助项目(10KJB510027) 江苏省自然科学基金资助项目(BK2009184)
关键词 人眼检测 算法 面部特征 特征抽取 模式分类 图像匹配 eye detection algorithms facial features feature extraction pattern classification image matching
  • 相关文献

参考文献10

二级参考文献46

共引文献71

同被引文献15

  • 1李粉兰,徐可欣.一种应用于人脸正面图像的眼睛自动定位算法[J].光学精密工程,2006,14(2):320-326. 被引量:20
  • 2Wang W C,Chang F L,Zhang G Q. A precise eye localization method based on ratio local binary pattern[J].Journal of Convergence Information Technology,2011,(01):126-134.
  • 3Sun W,Tang H Q. Driver fatigue driving detection based on eye state[J].International Journal of Digital Content Technology and its Applications,2011,(05):307-314.
  • 4Phimoltares S,Lursinsap C,Chamnongthai K. Face detection and facial feature localization without considering the appearance of image context[J].Image and Vision Computing,2007,(05):741-753.
  • 5Zhang Y,Zhao X Y,Fu H. A time delay neural network model for simulating eye gaze data[J].Journal of Experimental and Theoretical Artificial Intelligence,2011,(01):111-126.
  • 6Li Y H,Zhu S A. Hough transform for eye feature extraction[J].Journal of Zhejiang University(Engineering Science),2008,(07):1164-1168.
  • 7Horng W B,Chen C Y,Chang Y. Driver fatigue detection system based on eye tracking and dynamic template matching[J].Tamkang Journal of Science and Engineering,2008,(01):65-72.
  • 8Tian Z,Duan C J,Yuan K H. A texture featurebased method for dynamic organ tracking[J].International Journal of Innovative Computing Information and Control,2010,(12):5697-5708.
  • 9Haralick R M,Shanmugam K,Dinstein I. Textural features for image classification[J].IEEE Transactions on Systems Man and Cybernetics,1973,(06):610-621.
  • 10Ranqayyan R M,Nquyen T M,Ayres F J. Effect of pixel resolution on texture features of breast masses in manmograms[J].Journal of Digital Imaging,2010,(05):547-553.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部