期刊文献+

基于边界的最大间隔模糊分类器 被引量:2

Maximum-margin fuzzy classifier based on boundary
在线阅读 下载PDF
导出
摘要 对利用超平面、超(椭)球等几何形状实现数据分类的基于边界的主流分类方法进行了研究,在此基础上,提出了一种将空间点作为分类依据的最大间隔模糊分类器(MFC)。该方法首先在模式空间中找到一个模糊分类点c,c点距离两类样本要尽可能近且类间夹角间隔尽可能大。然后,测试样本通过c与训练样本间的最大化夹角间隔实现分类。最后,利用MFC的核化对偶式与最小包含球(MEB)的等价性,将MFC的应用范围从二类推广到单类。与主流分类方法的比较实验表明,MFC具有优良的分类性能和抗噪能力,其分类最高精度可达98.8%。 Several kinds of current boundary classification methods based on hyperplane, hypersphere or ellipsoid were studied, and a novel classification method called Maximum-margin Fuzzy Classifier (MFC) was proposed by using a space point as the classification criterion. By the proposed method, a fuzzy classified point c was chosen in the pattern space firstly, which should be as close to two classes as possible. Moreover, the angle between the two classes should be also as large as possible. Then, the testing points could be classified in terms of the maximum angular margin between c and all the training points. Finally, the applications of the MFC were popularized from two-class classification to one-class classification according to the kernel dual of MFC equivalent to the Minimum Enclosed Ball (MEB). Comparative experiments with current classification methods verify that the MFC has good classification performance and noise resistance ability and its classification accuracy has been reached 98.9%.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2012年第1期140-147,共8页 Optics and Precision Engineering
基金 国家863高技术研究发展计划资助项目(No.2007AA1Z158 No.2006AA10Z313) 国家自然科学基金资助项目(No.60773206 No.60704047)
关键词 模式分类 模糊分类器 模糊分类点 抗噪能力 单类问题 pattern classification fuzzy classifier fuzzy classified point noise resistance one-class classification
  • 相关文献

参考文献16

  • 1刘红岩,陈剑,陈国青.数据挖掘中的数据分类算法综述[J].清华大学学报(自然科学版),2002,42(6):727-730. 被引量:169
  • 2SCHOLKOPF B, PLATT J, SHAWE-TAYLOR J, et al.. Estimating the support of high-dimen- sional distribution [J]. Neural Computation, 2001, 13 : 1443-1471.
  • 3TAX D, DUIN R, Support vector data description [J]. Machine Learning, 2004 (54) : 45-66.
  • 4冯爱民,薛晖,刘学军,陈松灿,杨明.增强型单类支持向量机[J].计算机研究与发展,2008,45(11):1858-1864. 被引量:11
  • 5WEI X K, HUANG G B, LI Y H. Mahalanobis el- lipsoidal learning machine for one class classification [C]. Proc. of the 6th Int. Conf. on Machine learning and cybernetics. Los Alamitos: IEEE Computer Society, 2007: 3528-3533.
  • 6VAPNIK V. The Nature of Statistical Learning Theory [M]. New York: Springer-Verlag, 1995.
  • 7MAHESH P, GILES M. Feature selection for clas- sification of hyper spectral data by SVM [J]. IEEE Trans. on Geoscience and Remote Sensing, 2010, 48 (5): 2297-2307.
  • 8TSANG I W, KWOK J T, CHEUNG P M. Core vector machines: fast svm training on very large da- ta sets [J]. Journal of Machine Learning Re-search, 2005, 6: 363-392.
  • 9文传军,詹永照,陈长军.最大间隔最小体积球形支持向量机[J].控制与决策,2010,25(1):79-83. 被引量:19
  • 10SHIVASWAMY P, JEBARA T. Maximum rela- tive margin and data-dependent regularization [J]. Journal of Machine Learning Research, 2010 (11): 747-788.

二级参考文献32

  • 1潘志松,倪桂强,谭琳,胡谷雨.异常检测中单类分类算法和免疫框架设计[J].南京理工大学学报,2006,30(1):48-52. 被引量:5
  • 2刘红岩.可扩展的快速分类算法的研究与实现[M].北京:清华大学出版社,2000..
  • 3Tax D, Duin R P. Support vector domain description [J]. Pattern Recognition Letters, 1999, 200(11/13): 1191-1199
  • 4Bishop C. Novelty detection and neural network validation [C] //IEE Proc of Vision, Image and Signal Processing. 1994:217-222
  • 5Duda R O, Hart P E, Stork D G. Pattern Classification [M]. 2nd ed. New York: John Wiley & Sons, 2001
  • 6Lanckriet G R G, Ghaoui L E, Jordan M. Robust novelty detection with single-class MPM [C]//Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2002:905-912
  • 7Tsang I W, James T K, Li S. Learning the kernel in Mahalanobis one-class support vector machines [C] //Proc of the Int Joint Conf on Neural Networks (IJCNN'06). Los Alamitos: IEEE Computer Seeiety, 2006:1169-1175
  • 8Wei X K, Huang G B, Li Y H. Mahalanobis ellipsoidal learning machine for one class classificationin[C]//Proc of the 6th Int Conf on Machine Learning and Cybernetics. Los Alamitos: IEEE Computer Seciety, 2007: 3528-3533
  • 9Juszczak P. Learning to recognise.. A study on one class classiifcation and active learning [D]. Delft: Delft University of Technology, 2006
  • 10Dolia A, Harris C, Shawe-Taylor J. Kernel ellipsoidal trimming [J]. Computational Statistics and Data Analysis, 2007, 52(1): 309-324

共引文献199

同被引文献9

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部