期刊文献+

北京市PM_(10)自动监测网络优化研究 被引量:2

Optimization of PM_(10) Monitoring Network in Beijing
原文传递
导出
摘要 以北京市26个PM10监测站点2007-07-01~2008-06-30的监测数据为基础,应用正矩阵因子分析法将这些监测站点划分区域,使得每个区域具有独特的季节变化特征,并依据各类区域的去除偏差识别冗余信息站点,优化监测网络.结果表明,北京市PM10监测网络包括10个具有独特季节变化特征的区域.通州、延庆、密云水库、房山良乡和平谷世纪广场为5个独立区域;丰台花园、丰台云岗、门头沟滨湖广场、海淀北部新区和石景山古城5个西部站点为一个区域;东城东四、东城天坛、西城官园、西城万寿西宫、朝阳奥体中心、朝阳农展馆和顺义站点构成一个区域;南部站点大兴亦庄开发区、大兴黄村和大兴榆垡为一个区域;密云奥林匹克广场和怀柔站点为一个区域;西北部站点海淀香山、昌平定陵、海淀万柳和昌平镇站归为一个区域.每个区域PM10在2007~2008年具有独特的季节变化特征,PM10浓度由北向南逐渐升高.根据去除标准,设置2种PM10监测网络优化方案.方案1以监测网络不确定度为去除标准,12~18个站点即可完全代表26个站点的监测信息;方案2以2倍不确定度为去除标准,各典型月份需要保留的站点数目为10~13个. PM10 monitoring network in Beijing was classified using a new technique,positive matrix factorization(PMF).And then the removal bias of each cluster was calculated by GIS system and sites with redundant information were identified.The daily average mass concentrations of PM10 from July 2007 to June 2008 were analyzed at 26 sites.The result showed that PM10 monitoring network of Beijing was separated into 10 clusters.Tongzhou,Yanqing,Miyunshuiku,Fangshan,and Pinggu formed five separate clusters.The five clusters with more than one site each were Cluster 4,which included sites Fengtaihuayuan,Fengtaiyungang,Mentougou,Haidianbeibuxinqu,and Shijingshan,located within the west developing urban area;Cluster 7,which included Dongchengdongsi,Dongchengtiantan,Xichengwanshouxigong,Xichengguanyuan,Chaoyangaotizhongxin,Chaoyangnongzhanguan,and Shunyi,located mainly within the developed area and the east developing area;Cluster 8,which included Daxingyizhuang,Daxinghuangcun,and Daxingyufa,located within the southern suburban industrial area;Cluster 9,which included Miyunzhen and Huairou,located within the north remote rural area;and Cluster 10,which included Haidianxiangshan,Changpingdingling,Haidianwanliu,and Changpingzhen,located within the northwest suburban area.All the 10 clusters had unique seasonal variations.According to the removal criteria,two scenarios were constructed.The criterion of scenario 1 was the uncertainty of the PM10 monitoring network,and the optimization result in which 12-18 sites should be retained was equal to the original monitoring network included 26 sites.The criterion of scenario 2 was two times of the uncertainty,and 10-13 sites needed to be retained.
出处 《环境科学》 EI CAS CSCD 北大核心 2012年第2期525-531,共7页 Environmental Science
基金 环境保护公益性行业科研专项(200709001)
关键词 PM10 监测网络 优化 正矩阵因子分析 去除偏差 PM10 monitoring network management optimization positive matrix factorization removal bias
  • 相关文献

参考文献27

  • 1Pires J C M, Sousa S I V, Pereira M C, et al. Management of air quality monitoring using principal component and cluster analysis-Part I : SO2 and PMlo [ J ]. Atmospheric Environment, 2008, 42(6) : 1249-1260.
  • 2Pires J C M, Sousa S I V, Pereira M C, et al. Management of air quality monitoring using principal component and cluster analysis-Part 11 : CO, NO2 and 03 [ J ]. Atmospheric Environment, 2008, 42(6) : 1261-1274.
  • 3庄世坚.环境监测优化布点的一种新方法[J].数理统计与管理,1992,11(5):8-11. 被引量:4
  • 4Flemming J, Stern R M, Yamartino R J. A new air quality regime classification scheme for O3, NO2, SO2 and PMI0 observations sites [ J]. Atmospheric Environment, 2005, 39 (33) : 6121-6129.
  • 5Tarasova O A, Brenninkmeijer C A M, Jckel P, et al. A climatology of surface ozone in the extra tropics: cluster analysis of observations and model results [ J ]. Atmospheric Chemistry and Physics, 2007, 7(24) : 6099-6117.
  • 6冯治宇.网格采样-聚类分析在优化环境监测点中的应用[J].环境工程,2003,21(2):55-58. 被引量:8
  • 7Astel A, Tsakouski S, Barbieri P, et al. Comparison of self- organizing maps classification approach with cluster and principal components analysis for large environmental data sets [J]. Water Research, 2007, 41( 19): 4566-4578.
  • 8李祚泳.环境监测优化布点的人工神经网络模型[J].中国环境科学,1997,17(1):27-30. 被引量:20
  • 9韩波,孙利,黄勇.环境监测优化布点的自组织神经网络决策模型[J].环境研究与监测,2006,19(1):16-18. 被引量:2
  • 10Pittau M G, Romano D, Cirillo M C, et al. An optimal design for air pollution monitoring network [ J]. Environmetrics, 1999,10(3): 351-360.

二级参考文献58

共引文献97

同被引文献8

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部