期刊文献+

一种新的求解带约束的有限极大极小问题的精确罚函数 被引量:9

A New Exact Penalty Function for Solving Constrained Finite Min-Max Problems
在线阅读 下载PDF
导出
摘要 提出了一种新的精确光滑罚函数求解带约束的极大极小问题.仅仅添加一个额外的变量,利用这个精确光滑罚函数,将带约束的极大极小问题转化为无约束优化问题.证明了在合理的假设条件下,当罚参数充分大,罚问题的极小值点就是原问题的极小值点.进一步,研究了局部精确性质.数值结果表明这种罚函数算法是求解带约束有限极大极小问题的一种有效算法. A new exact yet smooth penalty function to tackle constrained min-max problems was introduced. Using this new penalty function and adding just one extra variable, a con- strained min-max problem was transformed into an unconstrained optimization one. It was proved that, under certain reasonable assumptions and when the penalty parameter was suffi- ciently large, the minimizer of this unconstrained optimization problem was equivalent to the minimizer of the original constrained one. Moreover, the local exactness property was also studied. The numerical results demonstrate that this penalty function method is an effective and promising approach for solving constrained finite min-max problems.
出处 《应用数学和力学》 CSCD 北大核心 2012年第2期250-264,共15页 Applied Mathematics and Mechanics
基金 AMSS-PolyU联合研究所资助项目
关键词 带约束的极大极小问题 约束优化问题 罚函数 min-max problem constrained optimization penalty function
  • 相关文献

参考文献19

  • 1Rustem B, Howe M A. Algorithms for Worst-Case Design With Applications to Risk Manage- ment[ M]. Princeton: Princeton University Press, 2001.
  • 2Zhu S S, Fukushima M. Worst-case conditional value-at-risk with application to robust port- folio management [ J ]. Operations Research, 2009, 57 ( 5 ) : 1155-1158.
  • 3Lemarechal C. Nondifferentiable optimization. Nemhauser G L, Rinnooy Kan A H G, Todd M J. Handbooks in Operations Research and Management Science. Vol l : Optimization [ M ]. Amsterdam, Netherlands: North-HoUand, 1989.
  • 4Rockafellar R T. Linear-quadric programming and optimal control[ J]. SIAM Journal on Con- trol and Optimization, 1987, 25(3) : 781-814.
  • 5Rockafellar R T. Computational schemes for large-scale problems in extended linear-quadratic programming[ J]. Mathematical Programming, 1990, 48(1/3) : 447-474.
  • 6Gaudioso M, Monaco M F. A bundle type approach to the unconstrained minimization of con- vex nonsmooth functions[ J]. Mathematical Programming, 1982, 23( 1 ) : 215-226.
  • 7Polak E, Mayne D H, Higgins J E. Superlinearly convergent algorithm for min-max problems [J]. Journal of Optimization Theory and Applications, 1991, 69(3) : 407-439.
  • 8Zowe J. Nondifferentiable optimization: a motivation and a short introduction into the subgra- dient and the bundle concept [ C ]//Schittkowski K. Computational Mathematical Program- ming, NATO SAI Series. New York:Springer, 1985.
  • 9DiPillo G, Grippo L, Lucidi S. A smooth method for the finite minimax problem[J]. Mathe-matical Programming, 1993, 60(1/3) : 187-214.
  • 10Gigola C, Gomez S. A regularization method for solving the finite convex min-max problems [J]. SIAM Journal on Numerical Analysis, 1990, 27(6): 1621-1634.

同被引文献67

引证文献9

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部