摘要
手写数字的识别是模式识别及机器学习的一个重要应用,应用范围非常广泛。本文提出一种基于决策树算法的手写数字识别方法,该方法通过提取基于密度的特征,通过训练得到一个决策树分类模型,进而进行手写数字的识别。实验证明该方法能够快速有效的进行手写数字的识别。
Handwritten numeral recognition is an application of pattern recognition and machine learning and has wide use in many fields. This paper proposed a method based on decision tree. The method can get a decision tree model for identification of handwritten numeral by extracting features based on: density. The experiments show that the proposed method can quickly and effectively recognize handwritten numeral.
出处
《信息技术与信息化》
2011年第6期21-23,73,共4页
Information Technology and Informatization
关键词
手写数字识别
特征提取
模式识别
决策树
Handwritten numeral recognition Feature extraction Pattern recognition Decision tree