期刊文献+

一类线性脉冲微分方程的有界变差解

Bounded Variational Solutions for Linear Differential Equations with Impulses
在线阅读 下载PDF
导出
摘要 讨论了一类非齐次线性脉冲微分方程与Kurzweil广义线性常微分方程的关系,建立了此类方程有界变差解的局部存在性和唯一性定理,并利用常数变易法得到其通解公式,讨论了此类方程的有界变差解对参数的连续依赖性定理. The relation between a class of non-homogeneous linear impulsive differential systems and Kurzweil generalized linear ordinary differential equations is discussed.The local existence and uniqueness theorems of bounded variation solutions for this class of linear impulsive differential equations are established.The formulae of the bounded variational solutions for the linear differential equations with impulses are established with the constant variation method.The continuous dependence on a parameter for the linear differential equations with impulses is discussed.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第1期15-22,共8页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(11061031)
关键词 线性脉冲微分方程 Kurzweil广义线性常微分方程 有界变差解 参数的连续依赖性 linear differential equation with impulses Kurzweil generalized linear ordinary differential equation locally bounded variation solution continuous dependence on a parameter
  • 相关文献

参考文献6

  • 1KURZWEIL J. Generalized Ordinary Differential Equations and Continuous Dependence on a Parameter [J]. Czechoslo yak Math, 1957, 7(82):418-449.
  • 2SCHWABIK S. Generalized Ordinary Differential Equations [M]. Singapore: World Scientific, 1992.
  • 3李宝麟,薛小平.x'=g(x,t)+h(t)型方程的拓扑动力系统与Kurzweil-Henstock积分[J].数学学报(中文版),2003,46(4):795-804. 被引量:9
  • 4李宝麟,梁雪峰.一类脉冲微分系统的有界变差解[J].数学研究,2008,41(2):192-198. 被引量:8
  • 5HALAS Z, TVRDY M. Continuous Dependence of Solutions of Generalized Linear Differential Equations on a Parameter [J]. Functional Differential Equations, 2009, 2 : 199- 213.
  • 6TVRDY M. Differential and Integral Equations in the Space of Regulated Functions [M]. Maryland: GCI Publishing House, 2002.

二级参考文献19

  • 1吴从炘,李宝麟.不连续系统的有界变差解[J].数学研究,1998,31(4):417-427. 被引量:33
  • 2李宝麟,马学敏.一类脉冲微分系统与Kurzweil广义常微分方程的关系[J].甘肃科学学报,2007,19(1):1-6. 被引量:9
  • 3李宝麟,马学敏.不连续系统有界变差解对参数的连续依赖性[J].数学研究,2007,40(2):159-163. 被引量:6
  • 4Schwabik S,Generalized ordinary differential equations,Singapore:World Scientific,1992.
  • 5Wu C.X., Li B.L,Stanley Lee E,discontinuous systems and henstock-kurzweil Integrals,J.Math Anal.Appl,1999,299(1):119-139.
  • 6Schwabik S.Generalized ordinary differential equations,Praha:Special Results,1989.50-64.
  • 7Saks,Theory of the integral,New York:2nd revised ed.Dover,1964.
  • 8Sell G. R., Nonautonomous differential equations and topological dynamics I, the Basic theory, Thans. Amer.Math. Soc., 1967. 127: 241-262.
  • 9Sell G. R., Nonautonomons differential equations and topological dynamics II, Limiting equations, Thans.Amer. Math. Soc., 1967, 127: 263-283.
  • 10Artstein Z., topological dynamics of an ordinary differential equation, J. Diff. Equations, 1977, 28: 216-223.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部