期刊文献+

基于相关鉴别分析和随机森林的人脸识别方法 被引量:3

Face Recognition Based on CDA and Random Forest
在线阅读 下载PDF
导出
摘要 本文研究了人脸识别应用中的"维数灾难"问题。针对经典欧式距离不能较好刻画高维空间中样本间相似性特征,我们引入了相关系数鉴别分析方法,在高维空间中,基于相关系数提取鉴别特征,实现了人脸样本的维数约简。本文实验结果表明,该方法在小规模及大规模数据集上均具有较好的性能。 This paper considers the dimensionality problem in face recognition application.The classic Euclidean distance is so simple that it can not describe the similarity relationships between samples in high-dimension space.The Correlation Discriminant Analysis method is introduced.In high-dimension space,the correlation similarity features are extracted.Finally,Random Forest is adopted as the classifier.The experiments in the paper valuate the performance of the proposed method on large databases and small databases.
作者 蔡坤琪
出处 《安徽电子信息职业技术学院学报》 2012年第1期15-18,共4页 Journal of Anhui Vocational College of Electronics & Information Technology
基金 琼台师范高等专科学校科研项目(批准号:qtky2010-20)
关键词 相关系数鉴别分析 随机森林 人脸识别 correlation discriminant analysis random forest face recognition
  • 相关文献

参考文献8

  • 1M. Turk and A. Pentland, "Face Recognition Using Eigenfaces," Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 586- 591, 1991.
  • 2A.M. Martinez and A.C. Kak, "PCA versus LDA," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 23, no. 2, pp. 228-233, Feb. 2001.
  • 3D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix faetorization. Nature. 401: 788-791, 1999.
  • 4S. Rowels and L. Saul, "Nonlinear Dimensionality Reduction by Locally Linear Embedding," Science, vol. 290, no. 22, pp. 2323- 2326, Dec. 2000.
  • 5J. Tenenbaum, V. Silva, and J. Langford, "A Global Geometric Framework for Nonlinear Dimensionality Reduction," Science, vol. 290, no. 22,pp. 2319-2323, Dec. 2000.
  • 6Y. Ma, S. Lao, E. Takikawa, and M. Kawade, "Discriminant Analysis in Correlation Similarity Measure Space," Proc. Int'l Conf. Machine Learning, 2007.
  • 7X. He, S. Yan, Y. Hu, P. Niyogi, and H. Zhang, "Face Recognition Using Laplacianfaces," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 27, no. 3, pp. 328-340, Mar. 2005.
  • 8Breiman. Random forests. Machine Learn- ing, 45(1):5-32, 200.

同被引文献41

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部