期刊文献+

直觉模糊熵与加权决策算法 被引量:3

Intuitionistic Fuzzy Entropy and Weighted Decision Making Algorithm
原文传递
导出
摘要 直觉模糊熵是直觉模糊集理论中的一个重要概念,反映了直觉模糊集的模糊程度和不确定程度.首先给出一种新的直觉模糊熵,并运用到多属性直觉模糊决策问题中.决策时根据直觉模糊熵计算属性权重,再综合决策者的偏好对各属性权重进行修正,然后使用直觉模糊集结算子和得分函数对方案进行排序,从而获得最优方案. Intuitionistic fuzzy entropy is an important conception in the theory of intuitionistic fuzzy set,which indicates fuzziness and uncertainty about an intutionistic fuzzy set.A new method of computing intuitionistic fuzzy entropy is investigated and applied to multi-attribute intuitionistic fuzzy decision making problem.According to the intuitionistic fuzzy entropy,the attribute's weights are obtained.And combinating with decision maker's preference, the attribute's weights are revised.Then an intuitionistic fuzzy rally operator and scoring function are used in the process of ranking all alternatives,then the optimal decision can be found.
出处 《数学的实践与认识》 CSCD 北大核心 2012年第4期255-260,共6页 Mathematics in Practice and Theory
基金 广东省自然科学基金(S2011010006103) 广东省自然科学基金(S2011010000735)
关键词 多属性决策 直觉模糊熵 权重 multi-attribute decision making intuitionistic fuzzy entropy weight
  • 相关文献

参考文献17

  • 1Atanassov K. Intuitionistic fuzzy sets[J]. Fuzzy sets and Systems, 1986, 20(1): 87-26.
  • 2Atanassov K. More on intuitionistic fuzzy sets[J]. Fuzzy sets and Systems, 1989, 33(1): 37-46.
  • 3Gau W L, Buehrer D J. Vague sets[J]. IEEE Transactions on System, Man, and Cybernetics, 1993, 23: 610-614.
  • 4Bustince H, Burillo P. Vague sets are intuitionistic fuzzy set[J]. Fuzzy sets and Systems, 1996,7 9(3): 403-405.
  • 5De S K, Biswas R, Roy A R. Some operations on intuitionistic fuzzy sets[J]. Fuzzy sets and Systems, 2000, 114(3): 477-484.
  • 6Bustince H, Herrera F, Montero J. Fuzzy sets and Their Extensions: Representation, Aggregation and Models[M]. Heidelberg: Physica- Verlag, 2007.
  • 7Xu Z S, Yager R R. Some geometric aggregation operators based on intuitionistic fuzzy sets[J]. International Journal of General Systems, 2006, 35(4): 417-433.
  • 8Szmidt E, Kacprzyk J. Distances between intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 2000, 114(3): 505-518.
  • 9Yager R R, Kacprzyk J. The Ordered Weighted Averaging Operator: Theory and Application[M]. Norwell, MA: Kluwer, 1997.
  • 10Burillo P, Bustince H. Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets[J]. Fuzzy Set and Systems, 1996,78(3):305-316.

二级参考文献21

  • 1黄国顺,刘云生.关于Vague集的模糊熵[J].计算机工程与应用,2005,41(33):48-50. 被引量:33
  • 2朱六兵,杨斌,陈纪东.Vague集模糊熵的构造方法研究[J].模式识别与人工智能,2006,19(4):481-484. 被引量:19
  • 3刘云生,黄国顺.Vague集的熵[J].小型微型计算机系统,2006,27(11):2115-2119. 被引量:14
  • 4范平,梁家荣,李天志.Vague集的新模糊熵[J].计算机工程与应用,2007,43(13):179-181. 被引量:34
  • 5Zadeh L A. Fuzzy sets[J].Inform and Contorl, 1965,8(3) : 338-365.
  • 6Rasiowa H.An algebraic approach to non-classical logics[M].New York:Amer Elsevier Publ Co Inc,1974.
  • 7Gau W L,Buehrer D J.Vague sets[J].IEEE Transactions on Systems,Man and Cybemetics,1993,23(20):610-614.
  • 8Deschrijver G,Kerre E E.On the relationship between some extensions[J].Fuzzy Sets and Systems,2003,136(3):333-361.
  • 9Szmidt E,Kacprzyk J.Entropy for intuitionistic fuzzy sets[J].Fuzzy Sets and Systems,2002,114(3) :505-518.
  • 10Gau W L, Buehrer D J. Vague sets [J]. IEEE Trans Syst Man Cybern, 1993, 23(2): 610-614.

共引文献130

同被引文献44

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部