期刊文献+

改进的美尔倒谱系数用于说话人识别研究 被引量:3

Research on speaker recognition with improved MFCC
在线阅读 下载PDF
导出
摘要 基于人耳听觉感知的MFCC较其他说话人特征具有强抗噪性、高识别率特点。考虑美尔滤波器组的结构,其只在低频区具有较高的分辨率,在高频区分辨率却较低,这样势必会遗失一些包含在高频区域的重要信息。利用反美尔域下的特征R-MFCC与MFCC的各自优点,将R-MFCC与MFCC结合,形成优势互补,并给出了衡量各种特征参数识别能力的Fisher准则,结合Fisher准则构造出一种新的混合特征参数。采用支持向量机分别以MFCC、R-MFCC以及新构造的混合特征为参数进行说话人的识别,实验证明基于Fisher准则的优选混合特征作为说话人识别特征是可行的。 Mel-Frequency Cepstral Coefficients (MFCC) based on the human auditory system represents high recognition rate and strong power against noise compared with other features. However, due to the structure of its filter bank, it captures characteristics infor- mation more effectively in the lower frequency regions than the higher regions. Thus there must be some informations contained in the high frequency, which are missed. This work uses a new set of features by reversal of the filter bank structure which can make up the lack of MFCC. Considering the advantages of the two features MFCC and R-MFCC and using the Fisher criterion which is used to mea- sure the recognition of various parameters, a new hybrid parameter is constructed through a combination of the Fisher criterion. Support vector machine as classifiers are adopted to identify speaker with MFCC, R-MFCC and the new hybrid parameter respectively. Experimental data shows that the new hybrid feature based on Fisher criterion is effective in raising the recognition rate of the speaker recognition.
作者 刘宏 刘立群
出处 《计算机工程与应用》 CSCD 2012年第8期155-157,共3页 Computer Engineering and Applications
关键词 说话人识别 反美尔倒谱系数 FISHER准则 支持向量机 speaker recognition reversal Mel-Frequency Cepstral Coefficients(MFCC) Fisher criterion support vector machine
  • 相关文献

参考文献8

  • 1Reynolds D A.An overview of automatic speaker recognition technology[C]//Intemational Conference on Acousitics, Speech, and Signal Processing(ICASSP),2002.
  • 2Saastamoinen J, Karpov E, Hautamaki V, et al.Accuracy of MFCC- based speaker recognition in series 60 device[J].EURASIP Journal on Applied Signal Processing, 2005,17: 2816-2827.
  • 3汪峥,连翰,王建军.说话人识别中特征参数提取的一种新方法[J].复旦学报(自然科学版),2005,44(1):197-200. 被引量:16
  • 4Chakroborty S, Roy A, Majurndar S, et al.Capturing complementary information via reversed filter bank and parallel implementation with MFCC for improved text-independent speaker identification[C]//International Conference on Computing Theory and Applications, 2007.
  • 5张芸,李昕,郑宇,杨庆涛.一种基于Fisher准则的说话人识别方法研究[J].兰州大学学报(自然科学版),2007,43(2):92-97. 被引量:5
  • 6Bruges C J C.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery, 1998, 2: 121-167.
  • 7Li Zhiwei, Shen Minfen.Classification of mental task EEG signals using wavelet packet entropy and SVM[C]//The 8th International Conference on Electronic Measuremem and Instruments,2007,3: 906-909.
  • 8马海豹,刘漫丹,张岑.基于小波包分析和SVM的在线手写签名鉴别[J].华东理工大学学报(自然科学版),2007,33(4):541-545. 被引量:4

二级参考文献22

  • 1李媛,袁余良,沈峰,潘金贵.一个基于神经网络的动态手写签名验证模型[J].计算机科学,2005,32(5):181-184. 被引量:7
  • 2边肇祺.模式识别[M].清华大学出版社,1999..
  • 3Gowdy J N, Tufekci Z. Mel-Scaled discrete wavelet coefficients for speech recognition [EB/OL]. http:∥ieeexplore.ieee.org/ie15/6939/18687/00861829.pdf, 2000-06-01/2004-02-06.
  • 4Torres H M, Rufiner H L. Automatic speaker identification by means of Mel cepstrum, wavelets and wavelet packets [EB/OL]. http:∥ieeexplore.ieee.org/ie15/7218/19434/00897886.pdf, 2000-07-01/2004-02-08.
  • 5Farooq O, Datta S. Mel filter-Like admissible wavelet packet structure for speech recognition [J]. IEEE Signal Processing Letters, 2001, 8(7): 196-198.
  • 6Reynodls D, Rose R. Robust text-independent speaker identification using Gaussian mixture speaker models [J]. IEEE Trans on Speech and Audio processing, 1995, 3(1): 72-83.
  • 7边肇祺 张学工.模式识别[M].北京:清华大学出版社,2002..
  • 8SONG F X,LIU S H,YANG J Y.Orthogonalized Fisher discriminant[J].Pattern Recognition,2003,38:311-313.
  • 9CHEN L,MAN H,NEFIAN A V.Face recognition based on multi-class mapping of Fisher scores[J].Pattern Recognition,2005,38:799-811.
  • 10YANG J,GAO X M.Kernel ICA:an alternative formulation and its application to face recognition[J].Pattern Recognition,2005,38:1784-1787.

共引文献20

同被引文献24

  • 1Tomi Kinnunen,Rahim Saeidi,Filip Sedlak,et al.Low-variance multitaper MFCC features:A case study in robust speaker verification[J].IEEE Trans on Audio,Speech and Language Processing,2012,20 (7):1990-2001.
  • 2Md Jahangir Alam,Tomi Kinnunen,Patrick Kenny,et al.Multitaper MFCC and PLP features for speaker verification using i-vectors[J].Speech Communication,2013,55 (2):237-251.
  • 3Lu Xugang,Dang Jianwu.Physiological feature extraction for text independent speaker identification using non-uniform subband processing[J].Acoustics,Speech,and Signal Processing,2007,4 (1):461-464.
  • 4王飒,郑链.基于Fisher准则和特征聚类的特征选择[J].计算机应用,2007,27(11):2812-2813. 被引量:21
  • 5Stolcke A, Kajarekar S, Ferrer L, et al. Speaker recognition with ses- sion variability normalization based on MLLR adaptation transforms [ J ]. IEEE Trans. On Audio, Speech, and Laguage Processing, 2007,15(7) :1987 - 1998.
  • 6Qin Jin. Robust Speaker Recognition[ D ]. USA:Language Technology Institute School of Computer Science, Carnegie Mellon University, Ph. D theses, 2007.
  • 7田克平,曾庆宁.与文本无关说话人识别特征提取的改进[J].电声技术,2008,32(11):51-55. 被引量:1
  • 8张永亮,张先庭,鲁宇明.基于FMFCC和HMM的说话人识别[J].计算机仿真,2010,27(5):352-354. 被引量:8
  • 9张岐龙,单甘霖,段修生,刘谊露.基于特征空间中类别可分性判据的特征选择[J].火力与指挥控制,2010,35(6):118-120. 被引量:5
  • 10丁世飞,齐丙娟,谭红艳.支持向量机理论与算法研究综述[J].电子科技大学学报,2011,40(1):2-10. 被引量:952

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部