摘要
本文针对单个BP神经网络在文本分类中准确率较低的问题,通过级联多个BP神经网络,利用Adaboost算法调整各个BP弱分类器的权值,从而获得了一个稳定、高效的BP_Adaboost强分类器。实验结果现实:BP_Adaboost文本分类准确率比BP神经网络提高了9.09%。
Contraposing the lower text classification accuracy by BP neural network,use the Adaboost algorithm to adjust the weights of the BP classifier to obtain a stable,the efficient a strong classifier.The experimental results: BP_Adaboost text classification accuracy increased by 9.09 percent than the BP neural network.
出处
《网络安全技术与应用》
2012年第3期42-43,共2页
Network Security Technology & Application