期刊文献+

信息融合在变压器油纸绝缘局部放电识别中的应用 被引量:24

Application of Information Fusion to Recognition of Partial Discharge in Transformer
在线阅读 下载PDF
导出
摘要 局部放电会引起变压器绝缘的老化和破坏,而变压器局部放电特性的研究能够很好反应变压器潜伏性缺陷,对其安全可靠运行具有重要意义,因而设计制作了模拟变压器沿面放电、气隙放电和电晕放电的3种缺陷模型,采用升压法进行相应的放电试验,通过分析油中溶解气体在局部放电发展过程中的变化规律,寻找出油中产生气体与不同局部放电的对应关系。引入局部放电的最大放电量相位特征谱图Hqmax(φ)和放电次数相位特征谱图Hn(φ),并提取基于谱图的统计特征参量,构建反向传播(back propagation,BP)神经网络和径向基函数(radical ba-sis function,RBF)神经网络对局部放电的放电类型进行初级识别,在此基础上,应用信息融合方法将初级识别结果融合油中产气特征以综合识别局部放电类型。实验结果表明,同一种溶解气体在不同放电模型中发展变化趋势是不一样的,根据统计特征参量和油中溶解气体变化规律,应用信息融合方法对变压器局部放电模式具有足够的识别能力。 Partial discharge characteristics is a very good response to internal insulation of latent defects,it has very important significance of safe and reliable operation for transformer.Aiming at the discharge properties of oil-paper insulation,we designed and experimentally researched 3 kinds of experimental models simulating discharges in electrical transformers.Moreover,we tested the corresponding discharge by the boost pressure method,collected the oil-gas data and partial discharge signal to analyze the variable law of the dissolved gases in oil during the development process of the partial discharge,and found the correspondence between the gas produced in oil and different discharge models.Using statistical method extracting characteristic parameters from phase spectrogram of maximum discharge capacity and discharge frequency,we constructed the BP neural network and RBF neural network to primarily recognize the discharge type of partial discharge in transformer.Meanwhile,the information fusion method was adopted to recognize results and oil gas features.Experimental results show that,development trend of the same kind of dissolved gas in different discharge models is different,and using information fusion method with the statistical characteristic parameter and the dissolved gases has enough ability to recognize different types of partial discharge in transformers.
出处 《高电压技术》 EI CAS CSCD 北大核心 2012年第3期553-559,共7页 High Voltage Engineering
基金 国家自然科学基金青年科学基金(51107155) 重庆大学输配电装备及系统安全与新技术国家重点实验室访问学者基金资助项目(2007DA10512711410)~~
关键词 局部放电 模式识别 信息融合 油中溶解气体分析 对应关系 神经网络 partial discharge(PD) pattern recognition information fusion dissolved gas analysis(DGA) correspondence relationship neural network
  • 相关文献

参考文献21

  • 1彭剑,罗安,周柯,夏向阳.变压器故障诊断中信息融合技术的应用[J].高电压技术,2007,33(3):144-147. 被引量:20
  • 2Cheng Yangchun,Ernst Gockenbach,Christian Eichler,et al.The partial discharge phenomena on the surface of oil impregna-ted paper with paralled electric filed[C]∥2010Annual ReportConference on Electrical Insulation and Dielectric Phenomena.West Lafayette,USA:[s.n.],2010:305-308.
  • 3吴鹏,陈志勇,李锐华,高乃奎,谢恒堃.电力变压器典型放电模型试验研究[J].高压电器,2004,40(3):161-163. 被引量:6
  • 4He Huimin,Cheng Yangchun.The risk asseses method of pow-er transformer[C]∥Proceedings of the 2010International Con-ference on Condition Monitoring and Diagnosis.Tokyo,Japan:[s.n.],2010:611-614.
  • 5Saha T K,Purkait P.Understanding the impacts of moistureand thermal ageing on transformer’s insulation by dielectric re-sponse and molecular weight measurements[J].IEEE Transac-tions on Dielectrics and Electrical Insulation,2008,15(2):568-582.
  • 6杨眉,李剑,杨丽君,李莉,宁佳欣.变压器典型油纸绝缘局部放电特性[J].重庆大学学报(自然科学版),2007,30(2):46-49. 被引量:22
  • 7陈伟根,蔚超,孙才新,唐炬.变压器油纸绝缘气隙放电特性及其产气规律[J].高电压技术,2010,36(4):849-855. 被引量:15
  • 8Ruijin Liao.Study on the thermal aging characteristics and bondbreaking process of oil paper insulation[C]∥2008InternationalSymposium on Electrical Insulation Materials.Yokkaichi,Ja-pan:IEEE,2008:291-296.
  • 9唐炬,王静,李剑,谭志红.统计参数用于局部放电模式识别的研究[J].高电压技术,2002,28(8):4-6. 被引量:37
  • 10Giselbrecht D,Leibfried T.Modelling of oil-paper insulationlayers in the frequency domain with cole-cole-functions[C]∥2007IEEE International Conference on Solid Dielectrics.Wen-chester,UK:IEEE,2007:59-62.

二级参考文献130

共引文献272

同被引文献359

引证文献24

二级引证文献425

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部