期刊文献+

具有阻尼项的二阶自共轭矩阵微分系统的振动定理

OSCILLATION THEOREMS FOR SECOND ORDER SELF-ADJOINT MATRIX DIFFERENTIAL SYSTEMS WITH DAMPING
原文传递
导出
摘要 运用Riccati技巧,正线性泛函和广义平均对方法,讨论具有阻尼项的二阶自共轭矩阵微分系统(P(t)Y'(t))'+r(t)P(t)Y'(t)+Q(t)Y(t)=0,t≥0,获得了一些新的振动定理.所得结果改进和推广了许多已知结论.特别地,补充了大量存在性结果,并能处理以前振动准则不能解决的问题. By using' Riccati technique, linear positive functional and generalized averaging pairs, this paper discusses the second order self-adjoint matrix differential system with damping:(P(t)Y'(t))' + r(t)P(t)Y'(t) + Q(t)Y(t) = 0, t ≥ 0.Some new oscillation criteria are obtained. These results generalize and improve many known conclusions. In particular, many new existence results are obtained.
作者 周秀君
出处 《系统科学与数学》 CSCD 北大核心 2012年第1期90-103,共14页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(10871074)资助课题
关键词 矩阵微分系统 振动 自共轭 Matrix differential system, oscillation, self-adjoint.
  • 相关文献

参考文献21

  • 1Leighton W.On self-adjoint differential equations of second order.J.London Math.Soc,1952, 27:37-47.
  • 2Wintner A.A criteria of oscillatory stability.Quart.Appl.Math.,1949,7:115-117.
  • 3Hartman P.On nonoscillatory linear differential equation of second order.Amer.J.Math.,1952, 74:389-400.
  • 4Coles W J.An oscillation for linear second order differential equations.Proc.Amer.Math.Soc, 1968,19:755-759.
  • 5Macki J W,Wong J S W.Oscillation theorems for linear second order differential equations.Proc. Amer.Math.Soc,1969,20:67-72.
  • 6Etgen G J,Pawlowski J F.Oscillation criteria for second order self adjoint matrix differential systems.Pacific J.Math.,1976,66:99-110.
  • 7Parhi N,Praharaj P.Oscillation criteria for second order self-adjoint matrix differential equations. Annal.Polonici Math.,1999,LXXⅡ:1-14.
  • 8Kumari I S,Umamaheswaram S.Oscillation criteria for linear matrix Hamiltonian system.J. Differential Eqations,2000,165:165-174.
  • 9Byers R,Harris B J and Kwong M K.Weights means and oscillation of second order matrix differential system.J.Differential Eqations,1986,61:164-177.
  • 10Butler G J,Erbe L H and Mingarelli A B.Riccati techniques and variational principle in oscillatory theory for linear system.Trans.Amer.Math.Soc,1987,303:263-282.

二级参考文献22

  • 1Zheng Z., Note on Wong's paper, J. Math. Anal. Appl., 2002, 274: 466-473.
  • 2Yan J., Oscillation theorems for second order linear differential equation with damping, Proc. Amer. Math.Soc., 1986, 98: 276-282.
  • 3Wang Q., Interval criteria for oscillation of certain matrix differential systems, J. Math. Anal. Appl., 2002,276: 373-395.
  • 4Yang X. J., Oscillation criteria for certain second order matrix differential equations, J. Math. Anal. Appl.,2002, 265: 285-295.
  • 5Zhuang R. K., Interval criteria for second order matrix differential systems, Acta Mathematica Sinica, Chinese Series, 2001, 44(6): 1037-1044.
  • 6Kumari I. S., Umamaheswaram S., Oscillation criteria for linear matrix Hamiltonian system, J. Diff. Eqs.,2000, 165: 165-174.
  • 7Yang Q. G., Mathsen R., Zhu S. M., Oscillation theorems for self-adjoint matrix Hamiltonian systems, J.Diff. Eqs., 2003, 190: 306-329.
  • 8Kong Q., Interval criteria for oscillation of second-order linear differential equation, J. Math. Anal. Appl.,1999, 229: 258-270.
  • 9Li W., Agarwal R. P., Interval oscillation criteria for second-order nonlinear differential equation with damping, Computers and Math. Appl., 2000, 40: 217-230.
  • 10Wong J. S. W., On Kamenev-type oscillation theorems for second order differential equations with damping,J. Math. Anal. Appl., 2001, 258: 244-257.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部