摘要
运用Riccati技巧,正线性泛函和广义平均对方法,讨论具有阻尼项的二阶自共轭矩阵微分系统(P(t)Y'(t))'+r(t)P(t)Y'(t)+Q(t)Y(t)=0,t≥0,获得了一些新的振动定理.所得结果改进和推广了许多已知结论.特别地,补充了大量存在性结果,并能处理以前振动准则不能解决的问题.
By using' Riccati technique, linear positive functional and generalized averaging pairs, this paper discusses the second order self-adjoint matrix differential system with damping:(P(t)Y'(t))' + r(t)P(t)Y'(t) + Q(t)Y(t) = 0, t ≥ 0.Some new oscillation criteria are obtained. These results generalize and improve many known conclusions. In particular, many new existence results are obtained.
出处
《系统科学与数学》
CSCD
北大核心
2012年第1期90-103,共14页
Journal of Systems Science and Mathematical Sciences
基金
国家自然科学基金(10871074)资助课题
关键词
矩阵微分系统
振动
自共轭
Matrix differential system, oscillation, self-adjoint.